| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco23a.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝑀 ,  𝑁 〉 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco23a.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝑅 ,  𝑆 〉 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco23a.x | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco23a.p | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco23a.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 6 | 
							
								
							 | 
							fuco23a.v | 
							⊢ ( 𝜑  →  𝑉  =  〈 〈 𝑅 ,  𝑆 〉 ,  〈 𝑀 ,  𝑁 〉 〉 )  | 
						
						
							| 7 | 
							
								
							 | 
							fuco23a.o | 
							⊢ ( 𝜑  →   ∗   =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝐸 )  =  ( comp ‘ 𝐸 )  | 
						
						
							| 9 | 
							
								1 2 3 8
							 | 
							fuco23alem | 
							⊢ ( 𝜑  →  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) )  | 
						
						
							| 11 | 
							
								4 5 6 1 2 3 10
							 | 
							fuco23 | 
							⊢ ( 𝜑  →  ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 )  =  ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) )  | 
						
						
							| 12 | 
							
								7
							 | 
							oveqd | 
							⊢ ( 𝜑  →  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) )  ∗  ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ,  ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 )  =  ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) )  ∗  ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) )  |