Metamath Proof Explorer


Theorem fuco23a

Description: The morphism part of the functor composition bifunctor. An alternate definition of o.F . See also fuco23 . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco23a.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
fuco23a.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
fuco23a.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fuco23a.p ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco23a.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco23a.v ( 𝜑𝑉 = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ )
fuco23a.o ( 𝜑 = ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) )
Assertion fuco23a ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fuco23a.a ( 𝜑𝐴 ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐶 Nat 𝐷 ) ⟨ 𝑀 , 𝑁 ⟩ ) )
2 fuco23a.b ( 𝜑𝐵 ∈ ( ⟨ 𝐾 , 𝐿 ⟩ ( 𝐷 Nat 𝐸 ) ⟨ 𝑅 , 𝑆 ⟩ ) )
3 fuco23a.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
4 fuco23a.p ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
5 fuco23a.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
6 fuco23a.v ( 𝜑𝑉 = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , ⟨ 𝑀 , 𝑁 ⟩ ⟩ )
7 fuco23a.o ( 𝜑 = ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) )
8 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
9 1 2 3 8 fuco23alem ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )
10 eqidd ( 𝜑 → ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) = ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) )
11 4 5 6 1 2 3 10 fuco23 ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( 𝐵 ‘ ( 𝑀𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝐾 ‘ ( 𝑀𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( ( ( 𝐹𝑋 ) 𝐿 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ) )
12 7 oveqd ( 𝜑 → ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( ⟨ ( 𝐾 ‘ ( 𝐹𝑋 ) ) , ( 𝑅 ‘ ( 𝐹𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )
13 9 11 12 3eqtr4d ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( ( ( 𝐹𝑋 ) 𝑆 ( 𝑀𝑋 ) ) ‘ ( 𝐴𝑋 ) ) ( 𝐵 ‘ ( 𝐹𝑋 ) ) ) )