| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuco23a.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝑀 , 𝑁 〉 ) ) |
| 2 |
|
fuco23a.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝑅 , 𝑆 〉 ) ) |
| 3 |
|
fuco23a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 4 |
|
fuco23a.p |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
| 5 |
|
fuco23a.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
| 6 |
|
fuco23a.v |
⊢ ( 𝜑 → 𝑉 = 〈 〈 𝑅 , 𝑆 〉 , 〈 𝑀 , 𝑁 〉 〉 ) |
| 7 |
|
fuco23a.o |
⊢ ( 𝜑 → ∗ = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 8 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 9 |
1 2 3 8
|
fuco23alem |
⊢ ( 𝜑 → ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 11 |
4 5 6 1 2 3 10
|
fuco23 |
⊢ ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( 𝐵 ‘ ( 𝑀 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝐾 ‘ ( 𝑀 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 12 |
7
|
oveqd |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∗ ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) , ( 𝑅 ‘ ( 𝐹 ‘ 𝑋 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝑅 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 13 |
9 11 12
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 ( 𝑈 𝑃 𝑉 ) 𝐴 ) ‘ 𝑋 ) = ( ( ( ( 𝐹 ‘ 𝑋 ) 𝑆 ( 𝑀 ‘ 𝑋 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∗ ( 𝐵 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |