Metamath Proof Explorer


Theorem fucocolem1

Description: Lemma for fucoco . Associativity for morphisms in category E . To simply put, ( ( a .x. b ) .x. ( c .x. d ) ) = ( a .x. ( ( b .x. c ) .x. d ) ) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucocolem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fucocolem1.p ( 𝜑𝑃 ∈ ( 𝐷 Func 𝐸 ) )
fucocolem1.q ( 𝜑𝑄 ∈ ( 𝐶 Func 𝐷 ) )
fucocolem1.a ( 𝜑𝐴 ∈ ( ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
fucocolem1.b ( 𝜑𝐵 ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
Assertion fucocolem1 ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucocolem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 fucocolem1.p ( 𝜑𝑃 ∈ ( 𝐷 Func 𝐸 ) )
7 fucocolem1.q ( 𝜑𝑄 ∈ ( 𝐶 Func 𝐷 ) )
8 fucocolem1.a ( 𝜑𝐴 ∈ ( ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
9 fucocolem1.b ( 𝜑𝐵 ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
10 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
11 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
12 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
13 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
14 13 natrcl ( 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
15 1 14 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
16 15 simpld ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
17 16 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
18 17 funcrcl3 ( 𝜑𝐸 ∈ Cat )
19 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
20 19 10 17 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
21 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
22 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
23 22 natrcl ( 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
24 2 23 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
25 24 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
26 25 func1st2nd ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
27 21 19 26 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
28 27 5 ffvelcdmd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
29 20 28 ffvelcdmd ( 𝜑 → ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
30 6 func1st2nd ( 𝜑 → ( 1st𝑃 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑃 ) )
31 19 10 30 funcf1 ( 𝜑 → ( 1st𝑃 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
32 7 func1st2nd ( 𝜑 → ( 1st𝑄 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑄 ) )
33 21 19 32 funcf1 ( 𝜑 → ( 1st𝑄 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
34 33 5 ffvelcdmd ( 𝜑 → ( ( 1st𝑄 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
35 31 34 ffvelcdmd ( 𝜑 → ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
36 15 simprd ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
37 36 func1st2nd ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
38 19 10 37 funcf1 ( 𝜑 → ( 1st𝐾 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
39 22 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
40 4 39 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
41 40 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
42 41 func1st2nd ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
43 21 19 42 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
44 43 5 ffvelcdmd ( 𝜑 → ( ( 1st𝑁 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
45 38 44 ffvelcdmd ( 𝜑 → ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
46 24 simprd ( 𝜑𝐿 ∈ ( 𝐶 Func 𝐷 ) )
47 46 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
48 21 19 47 funcf1 ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
49 48 5 ffvelcdmd ( 𝜑 → ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
50 20 49 ffvelcdmd ( 𝜑 → ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
51 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
52 19 51 11 17 28 49 funcf2 ( 𝜑 → ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) : ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
53 22 2 nat1st2nd ( 𝜑𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ) )
54 22 53 21 51 5 natcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
55 52 54 ffvelcdmd ( 𝜑 → ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
56 10 11 12 18 29 50 35 55 9 catcocl ( 𝜑 → ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
57 13 natrcl ( 𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
58 3 57 syl ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
59 58 simprd ( 𝜑𝑀 ∈ ( 𝐷 Func 𝐸 ) )
60 59 func1st2nd ( 𝜑 → ( 1st𝑀 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑀 ) )
61 19 10 60 funcf1 ( 𝜑 → ( 1st𝑀 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
62 61 44 ffvelcdmd ( 𝜑 → ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
63 13 3 nat1st2nd ( 𝜑𝑈 ∈ ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ ) )
64 13 63 19 11 44 natcl ( 𝜑 → ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
65 10 11 12 18 29 35 45 56 8 62 64 catass ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) ) )
66 10 11 12 18 29 50 35 55 9 45 8 catass ( 𝜑 → ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) = ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )
67 66 oveq2d ( 𝜑 → ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) ) )
68 65 67 eqtr4d ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )