Metamath Proof Explorer


Theorem fucocolem1

Description: Lemma for fucoco . Associativity for morphisms in category E . To simply put, ( ( a .x. b ) .x. ( c .x. d ) ) = ( a .x. ( ( b .x. c ) .x. d ) ) for morphism compositions. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucocolem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fucocolem1.p ( 𝜑𝑃 ∈ ( 𝐷 Func 𝐸 ) )
fucocolem1.q ( 𝜑𝑄 ∈ ( 𝐶 Func 𝐷 ) )
fucocolem1.a ( 𝜑𝐴 ∈ ( ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
fucocolem1.b ( 𝜑𝐵 ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
Assertion fucocolem1 ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucocolem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 fucocolem1.p ( 𝜑𝑃 ∈ ( 𝐷 Func 𝐸 ) )
7 fucocolem1.q ( 𝜑𝑄 ∈ ( 𝐶 Func 𝐷 ) )
8 fucocolem1.a ( 𝜑𝐴 ∈ ( ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
9 fucocolem1.b ( 𝜑𝐵 ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
10 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
11 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
12 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
13 relfunc Rel ( 𝐷 Func 𝐸 )
14 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
15 14 natrcl ( 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
16 1 15 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
17 16 simpld ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
18 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
19 13 17 18 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
20 19 funcrcl3 ( 𝜑𝐸 ∈ Cat )
21 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
22 21 10 19 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
23 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
24 relfunc Rel ( 𝐶 Func 𝐷 )
25 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
26 25 natrcl ( 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
27 2 26 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
28 27 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
29 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
30 24 28 29 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
31 23 21 30 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
32 31 5 ffvelcdmd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
33 22 32 ffvelcdmd ( 𝜑 → ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
34 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑃 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝑃 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑃 ) )
35 13 6 34 sylancr ( 𝜑 → ( 1st𝑃 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑃 ) )
36 21 10 35 funcf1 ( 𝜑 → ( 1st𝑃 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
37 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑄 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑄 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑄 ) )
38 24 7 37 sylancr ( 𝜑 → ( 1st𝑄 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑄 ) )
39 23 21 38 funcf1 ( 𝜑 → ( 1st𝑄 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
40 39 5 ffvelcdmd ( 𝜑 → ( ( 1st𝑄 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
41 36 40 ffvelcdmd ( 𝜑 → ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
42 16 simprd ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
43 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
44 13 42 43 sylancr ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
45 21 10 44 funcf1 ( 𝜑 → ( 1st𝐾 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
46 25 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
47 4 46 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
48 47 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
49 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
50 24 48 49 sylancr ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
51 23 21 50 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
52 51 5 ffvelcdmd ( 𝜑 → ( ( 1st𝑁 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
53 45 52 ffvelcdmd ( 𝜑 → ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
54 27 simprd ( 𝜑𝐿 ∈ ( 𝐶 Func 𝐷 ) )
55 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
56 24 54 55 sylancr ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
57 23 21 56 funcf1 ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
58 57 5 ffvelcdmd ( 𝜑 → ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
59 22 58 ffvelcdmd ( 𝜑 → ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
60 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
61 21 60 11 19 32 58 funcf2 ( 𝜑 → ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) : ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
62 25 2 nat1st2nd ( 𝜑𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ) )
63 25 62 23 60 5 natcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
64 61 63 ffvelcdmd ( 𝜑 → ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
65 10 11 12 20 33 59 41 64 9 catcocl ( 𝜑 → ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) )
66 14 natrcl ( 𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
67 3 66 syl ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
68 67 simprd ( 𝜑𝑀 ∈ ( 𝐷 Func 𝐸 ) )
69 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝑀 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑀 ) )
70 13 68 69 sylancr ( 𝜑 → ( 1st𝑀 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑀 ) )
71 21 10 70 funcf1 ( 𝜑 → ( 1st𝑀 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
72 71 52 ffvelcdmd ( 𝜑 → ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐸 ) )
73 14 3 nat1st2nd ( 𝜑𝑈 ∈ ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ ) )
74 14 73 21 11 52 natcl ( 𝜑 → ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ∈ ( ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) )
75 10 11 12 20 33 41 53 65 8 72 74 catass ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) ) )
76 10 11 12 20 33 59 41 64 9 53 8 catass ( 𝜑 → ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) = ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )
77 76 oveq2d ( 𝜑 → ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) ) )
78 75 77 eqtr4d ( 𝜑 → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐴 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( 𝐵 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( 𝐴 ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) , ( ( 1st𝑃 ) ‘ ( ( 1st𝑄 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) 𝐵 ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑋 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑋 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ ( 𝑆𝑋 ) ) ) ) )