Metamath Proof Explorer


Theorem fucocolem2

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
fucocolem2.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
fucocolem2.ot · = ( comp ‘ 𝑇 )
fucocolem2.od = ( comp ‘ 𝐷 )
Assertion fucocolem2 ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
7 fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
8 fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
9 fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
10 fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
11 fucocolem2.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
12 fucocolem2.ot · = ( comp ‘ 𝑇 )
13 fucocolem2.od = ( comp ‘ 𝐷 )
14 6 7 opeq12d ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ = ⟨ ⟨ 𝐹 , 𝐺 ⟩ , ⟨ 𝐾 , 𝐿 ⟩ ⟩ )
15 14 8 oveq12d ( 𝜑 → ( ⟨ 𝑋 , 𝑌· 𝑍 ) = ( ⟨ ⟨ 𝐹 , 𝐺 ⟩ , ⟨ 𝐾 , 𝐿 ⟩ ⟩ ·𝑀 , 𝑁 ⟩ ) )
16 15 10 9 oveq123d ( 𝜑 → ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) = ( ⟨ 𝑈 , 𝑉 ⟩ ( ⟨ ⟨ 𝐹 , 𝐺 ⟩ , ⟨ 𝐾 , 𝐿 ⟩ ⟩ ·𝑀 , 𝑁 ⟩ ) ⟨ 𝑅 , 𝑆 ⟩ ) )
17 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
18 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
19 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
20 11 12 1 2 3 4 17 18 19 13 xpcfucco3 ( 𝜑 → ( ⟨ 𝑈 , 𝑉 ⟩ ( ⟨ ⟨ 𝐹 , 𝐺 ⟩ , ⟨ 𝐾 , 𝐿 ⟩ ⟩ ·𝑀 , 𝑁 ⟩ ) ⟨ 𝑅 , 𝑆 ⟩ ) = ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ )
21 16 20 eqtrd ( 𝜑 → ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) = ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ )
22 21 fveq2d ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( ( 𝑋 𝑃 𝑍 ) ‘ ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ ) )
23 df-ov ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ( 𝑋 𝑃 𝑍 ) ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ) = ( ( 𝑋 𝑃 𝑍 ) ‘ ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ )
24 22 23 eqtr4di ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ( 𝑋 𝑃 𝑍 ) ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ) )
25 11 12 1 2 3 4 xpcfuccocl ( 𝜑 → ( ⟨ 𝑈 , 𝑉 ⟩ ( ⟨ ⟨ 𝐹 , 𝐺 ⟩ , ⟨ 𝐾 , 𝐿 ⟩ ⟩ ·𝑀 , 𝑁 ⟩ ) ⟨ 𝑅 , 𝑆 ⟩ ) ∈ ( ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) × ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) ) )
26 20 25 eqeltrrd ( 𝜑 → ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ ∈ ( ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) × ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) ) )
27 opelxp2 ( ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ ∈ ( ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) × ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) ) → ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
28 26 27 syl ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
29 opelxp1 ( ⟨ ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) , ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ⟩ ∈ ( ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) × ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝑁 ) ) → ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
30 26 29 syl ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
31 5 6 8 28 30 fuco22a ( 𝜑 → ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ( 𝑋 𝑃 𝑍 ) ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) ) ) ) )
32 relfunc Rel ( 𝐶 Func 𝐷 )
33 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
34 33 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
35 4 34 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
36 35 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
37 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
38 32 36 37 sylancr ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
39 18 17 38 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
40 39 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝑁 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
41 fveq2 ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( ( 1st𝐹 ) ‘ 𝑝 ) = ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
42 fveq2 ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( ( 1st𝐾 ) ‘ 𝑝 ) = ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
43 41 42 opeq12d ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ )
44 fveq2 ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( ( 1st𝑀 ) ‘ 𝑝 ) = ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
45 43 44 oveq12d ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
46 fveq2 ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( 𝑈𝑝 ) = ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
47 fveq2 ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( 𝑅𝑝 ) = ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
48 45 46 47 oveq123d ( 𝑝 = ( ( 1st𝑁 ) ‘ 𝑥 ) → ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
49 eqid ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) = ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) )
50 ovex ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ∈ V
51 48 49 50 fvmpt3i ( ( ( 1st𝑁 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) → ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
52 40 51 syl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
53 fveq2 ( 𝑝 = 𝑥 → ( ( 1st𝐺 ) ‘ 𝑝 ) = ( ( 1st𝐺 ) ‘ 𝑥 ) )
54 fveq2 ( 𝑝 = 𝑥 → ( ( 1st𝐿 ) ‘ 𝑝 ) = ( ( 1st𝐿 ) ‘ 𝑥 ) )
55 53 54 opeq12d ( 𝑝 = 𝑥 → ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ = ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ )
56 fveq2 ( 𝑝 = 𝑥 → ( ( 1st𝑁 ) ‘ 𝑝 ) = ( ( 1st𝑁 ) ‘ 𝑥 ) )
57 55 56 oveq12d ( 𝑝 = 𝑥 → ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) = ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
58 fveq2 ( 𝑝 = 𝑥 → ( 𝑉𝑝 ) = ( 𝑉𝑥 ) )
59 fveq2 ( 𝑝 = 𝑥 → ( 𝑆𝑝 ) = ( 𝑆𝑥 ) )
60 57 58 59 oveq123d ( 𝑝 = 𝑥 → ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) = ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) )
61 eqid ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) = ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) )
62 ovex ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ∈ V
63 60 61 62 fvmpt3i ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) = ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) )
64 63 fveq2d ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) )
65 64 adantl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) )
66 52 65 oveq12d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) ) ) = ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) )
67 66 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑝 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑈𝑝 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑝 ) , ( ( 1st𝐾 ) ‘ 𝑝 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ 𝑝 ) ) ( 𝑅𝑝 ) ) ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑉𝑝 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑝 ) , ( ( 1st𝐿 ) ‘ 𝑝 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( 𝑆𝑝 ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) ) )
68 24 31 67 3eqtrd ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) ) )