Metamath Proof Explorer


Theorem xpcfuccocl

Description: The composition of two natural transformations is a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
xpcfucco2.o 𝑂 = ( comp ‘ 𝑇 )
xpcfucco2.f ( 𝜑𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) )
xpcfucco2.g ( 𝜑𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) )
xpcfucco2.k ( 𝜑𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) )
xpcfucco2.l ( 𝜑𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) )
Assertion xpcfuccocl ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) ∈ ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 xpcfucco2.o 𝑂 = ( comp ‘ 𝑇 )
3 xpcfucco2.f ( 𝜑𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) )
4 xpcfucco2.g ( 𝜑𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) )
5 xpcfucco2.k ( 𝜑𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) )
6 xpcfucco2.l ( 𝜑𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) )
7 1 2 3 4 5 6 xpcfucco2 ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ⟩ )
8 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
9 eqid ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 )
10 eqid ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐵 FuncCat 𝐶 ) )
11 8 9 10 3 5 fuccocl ( 𝜑 → ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) )
12 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
13 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
14 eqid ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐸 ) )
15 12 13 14 4 6 fuccocl ( 𝜑 → ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) )
16 11 15 opelxpd ( 𝜑 → ⟨ ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ⟩ ∈ ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) )
17 7 16 eqeltrd ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) ∈ ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) )