Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfuchom2.t |
⊢ 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) ) |
2 |
|
xpcfucco2.o |
⊢ 𝑂 = ( comp ‘ 𝑇 ) |
3 |
|
xpcfucco2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) ) |
4 |
|
xpcfucco2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) ) |
5 |
|
xpcfucco2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) ) |
6 |
|
xpcfucco2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) |
7 |
1 2 3 4 5 6
|
xpcfucco2 |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ( 〈 〈 𝑀 , 𝑁 〉 , 〈 𝑃 , 𝑄 〉 〉 𝑂 〈 𝑅 , 𝑆 〉 ) 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐾 ( 〈 𝑀 , 𝑃 〉 ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( 〈 𝑁 , 𝑄 〉 ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) 〉 ) |
8 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 ) |
9 |
|
eqid |
⊢ ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 ) |
10 |
|
eqid |
⊢ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) |
11 |
8 9 10 3 5
|
fuccocl |
⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑀 , 𝑃 〉 ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) ) |
12 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
13 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
14 |
|
eqid |
⊢ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) |
15 |
12 13 14 4 6
|
fuccocl |
⊢ ( 𝜑 → ( 𝐿 ( 〈 𝑁 , 𝑄 〉 ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) |
16 |
11 15
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 𝐾 ( 〈 𝑀 , 𝑃 〉 ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( 〈 𝑁 , 𝑄 〉 ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) 〉 ∈ ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) ) |
17 |
7 16
|
eqeltrd |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ( 〈 〈 𝑀 , 𝑁 〉 , 〈 𝑃 , 𝑄 〉 〉 𝑂 〈 𝑅 , 𝑆 〉 ) 〈 𝐹 , 𝐺 〉 ) ∈ ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑅 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) ) |