Metamath Proof Explorer


Theorem xpcfuccocl

Description: The composition of two natural transformations is a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t T = B FuncCat C × c D FuncCat E
xpcfucco2.o O = comp T
xpcfucco2.f φ F M B Nat C P
xpcfucco2.g φ G N D Nat E Q
xpcfucco2.k φ K P B Nat C R
xpcfucco2.l φ L Q D Nat E S
Assertion xpcfuccocl φ K L M N P Q O R S F G M B Nat C R × N D Nat E S

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t T = B FuncCat C × c D FuncCat E
2 xpcfucco2.o O = comp T
3 xpcfucco2.f φ F M B Nat C P
4 xpcfucco2.g φ G N D Nat E Q
5 xpcfucco2.k φ K P B Nat C R
6 xpcfucco2.l φ L Q D Nat E S
7 1 2 3 4 5 6 xpcfucco2 φ K L M N P Q O R S F G = K M P comp B FuncCat C R F L N Q comp D FuncCat E S G
8 eqid B FuncCat C = B FuncCat C
9 eqid B Nat C = B Nat C
10 eqid comp B FuncCat C = comp B FuncCat C
11 8 9 10 3 5 fuccocl φ K M P comp B FuncCat C R F M B Nat C R
12 eqid D FuncCat E = D FuncCat E
13 eqid D Nat E = D Nat E
14 eqid comp D FuncCat E = comp D FuncCat E
15 12 13 14 4 6 fuccocl φ L N Q comp D FuncCat E S G N D Nat E S
16 11 15 opelxpd φ K M P comp B FuncCat C R F L N Q comp D FuncCat E S G M B Nat C R × N D Nat E S
17 7 16 eqeltrd φ K L M N P Q O R S F G M B Nat C R × N D Nat E S