Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfuchom2.t |
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
2 |
|
xpcfucco2.o |
|- O = ( comp ` T ) |
3 |
|
xpcfucco2.f |
|- ( ph -> F e. ( M ( B Nat C ) P ) ) |
4 |
|
xpcfucco2.g |
|- ( ph -> G e. ( N ( D Nat E ) Q ) ) |
5 |
|
xpcfucco2.k |
|- ( ph -> K e. ( P ( B Nat C ) R ) ) |
6 |
|
xpcfucco2.l |
|- ( ph -> L e. ( Q ( D Nat E ) S ) ) |
7 |
1 2 3 4 5 6
|
xpcfucco2 |
|- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) , ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) >. ) |
8 |
|
eqid |
|- ( B FuncCat C ) = ( B FuncCat C ) |
9 |
|
eqid |
|- ( B Nat C ) = ( B Nat C ) |
10 |
|
eqid |
|- ( comp ` ( B FuncCat C ) ) = ( comp ` ( B FuncCat C ) ) |
11 |
8 9 10 3 5
|
fuccocl |
|- ( ph -> ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) e. ( M ( B Nat C ) R ) ) |
12 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
13 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
14 |
|
eqid |
|- ( comp ` ( D FuncCat E ) ) = ( comp ` ( D FuncCat E ) ) |
15 |
12 13 14 4 6
|
fuccocl |
|- ( ph -> ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) e. ( N ( D Nat E ) S ) ) |
16 |
11 15
|
opelxpd |
|- ( ph -> <. ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) , ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) >. e. ( ( M ( B Nat C ) R ) X. ( N ( D Nat E ) S ) ) ) |
17 |
7 16
|
eqeltrd |
|- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) e. ( ( M ( B Nat C ) R ) X. ( N ( D Nat E ) S ) ) ) |