Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfuchom2.t |
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
2 |
|
xpcfucco2.o |
|- O = ( comp ` T ) |
3 |
|
xpcfucco2.f |
|- ( ph -> F e. ( M ( B Nat C ) P ) ) |
4 |
|
xpcfucco2.g |
|- ( ph -> G e. ( N ( D Nat E ) Q ) ) |
5 |
|
xpcfucco2.k |
|- ( ph -> K e. ( P ( B Nat C ) R ) ) |
6 |
|
xpcfucco2.l |
|- ( ph -> L e. ( Q ( D Nat E ) S ) ) |
7 |
|
xpcfucco3.x |
|- X = ( Base ` B ) |
8 |
|
xpcfucco3.y |
|- Y = ( Base ` D ) |
9 |
|
xpcfucco3.o1 |
|- .x. = ( comp ` C ) |
10 |
|
xpcfucco3.o2 |
|- .xb = ( comp ` E ) |
11 |
1 2 3 4 5 6
|
xpcfucco2 |
|- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) , ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) >. ) |
12 |
|
eqid |
|- ( B FuncCat C ) = ( B FuncCat C ) |
13 |
|
eqid |
|- ( B Nat C ) = ( B Nat C ) |
14 |
|
eqid |
|- ( comp ` ( B FuncCat C ) ) = ( comp ` ( B FuncCat C ) ) |
15 |
12 13 7 9 14 3 5
|
fucco |
|- ( ph -> ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) = ( x e. X |-> ( ( K ` x ) ( <. ( ( 1st ` M ) ` x ) , ( ( 1st ` P ) ` x ) >. .x. ( ( 1st ` R ) ` x ) ) ( F ` x ) ) ) ) |
16 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
17 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
18 |
|
eqid |
|- ( comp ` ( D FuncCat E ) ) = ( comp ` ( D FuncCat E ) ) |
19 |
16 17 8 10 18 4 6
|
fucco |
|- ( ph -> ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) = ( y e. Y |-> ( ( L ` y ) ( <. ( ( 1st ` N ) ` y ) , ( ( 1st ` Q ) ` y ) >. .xb ( ( 1st ` S ) ` y ) ) ( G ` y ) ) ) ) |
20 |
15 19
|
opeq12d |
|- ( ph -> <. ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) , ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) >. = <. ( x e. X |-> ( ( K ` x ) ( <. ( ( 1st ` M ) ` x ) , ( ( 1st ` P ) ` x ) >. .x. ( ( 1st ` R ) ` x ) ) ( F ` x ) ) ) , ( y e. Y |-> ( ( L ` y ) ( <. ( ( 1st ` N ) ` y ) , ( ( 1st ` Q ) ` y ) >. .xb ( ( 1st ` S ) ` y ) ) ( G ` y ) ) ) >. ) |
21 |
11 20
|
eqtrd |
|- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( x e. X |-> ( ( K ` x ) ( <. ( ( 1st ` M ) ` x ) , ( ( 1st ` P ) ` x ) >. .x. ( ( 1st ` R ) ` x ) ) ( F ` x ) ) ) , ( y e. Y |-> ( ( L ` y ) ( <. ( ( 1st ` N ) ` y ) , ( ( 1st ` Q ) ` y ) >. .xb ( ( 1st ` S ) ` y ) ) ( G ` y ) ) ) >. ) |