Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfuchom2.t |
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
2 |
|
xpcfucco2.o |
|- O = ( comp ` T ) |
3 |
|
xpcfucco2.f |
|- ( ph -> F e. ( M ( B Nat C ) P ) ) |
4 |
|
xpcfucco2.g |
|- ( ph -> G e. ( N ( D Nat E ) Q ) ) |
5 |
|
xpcfucco2.k |
|- ( ph -> K e. ( P ( B Nat C ) R ) ) |
6 |
|
xpcfucco2.l |
|- ( ph -> L e. ( Q ( D Nat E ) S ) ) |
7 |
|
eqid |
|- ( B FuncCat C ) = ( B FuncCat C ) |
8 |
7
|
fucbas |
|- ( B Func C ) = ( Base ` ( B FuncCat C ) ) |
9 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
10 |
9
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
11 |
|
eqid |
|- ( B Nat C ) = ( B Nat C ) |
12 |
7 11
|
fuchom |
|- ( B Nat C ) = ( Hom ` ( B FuncCat C ) ) |
13 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
14 |
9 13
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
15 |
11
|
natrcl |
|- ( F e. ( M ( B Nat C ) P ) -> ( M e. ( B Func C ) /\ P e. ( B Func C ) ) ) |
16 |
3 15
|
syl |
|- ( ph -> ( M e. ( B Func C ) /\ P e. ( B Func C ) ) ) |
17 |
16
|
simpld |
|- ( ph -> M e. ( B Func C ) ) |
18 |
13
|
natrcl |
|- ( G e. ( N ( D Nat E ) Q ) -> ( N e. ( D Func E ) /\ Q e. ( D Func E ) ) ) |
19 |
4 18
|
syl |
|- ( ph -> ( N e. ( D Func E ) /\ Q e. ( D Func E ) ) ) |
20 |
19
|
simpld |
|- ( ph -> N e. ( D Func E ) ) |
21 |
16
|
simprd |
|- ( ph -> P e. ( B Func C ) ) |
22 |
19
|
simprd |
|- ( ph -> Q e. ( D Func E ) ) |
23 |
|
eqid |
|- ( comp ` ( B FuncCat C ) ) = ( comp ` ( B FuncCat C ) ) |
24 |
|
eqid |
|- ( comp ` ( D FuncCat E ) ) = ( comp ` ( D FuncCat E ) ) |
25 |
11
|
natrcl |
|- ( K e. ( P ( B Nat C ) R ) -> ( P e. ( B Func C ) /\ R e. ( B Func C ) ) ) |
26 |
5 25
|
syl |
|- ( ph -> ( P e. ( B Func C ) /\ R e. ( B Func C ) ) ) |
27 |
26
|
simprd |
|- ( ph -> R e. ( B Func C ) ) |
28 |
13
|
natrcl |
|- ( L e. ( Q ( D Nat E ) S ) -> ( Q e. ( D Func E ) /\ S e. ( D Func E ) ) ) |
29 |
6 28
|
syl |
|- ( ph -> ( Q e. ( D Func E ) /\ S e. ( D Func E ) ) ) |
30 |
29
|
simprd |
|- ( ph -> S e. ( D Func E ) ) |
31 |
1 8 10 12 14 17 20 21 22 23 24 2 27 30 3 4 5 6
|
xpcco2 |
|- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( K ( <. M , P >. ( comp ` ( B FuncCat C ) ) R ) F ) , ( L ( <. N , Q >. ( comp ` ( D FuncCat E ) ) S ) G ) >. ) |