| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcfuchom2.t |
⊢ 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) ) |
| 2 |
|
xpcfucco2.o |
⊢ 𝑂 = ( comp ‘ 𝑇 ) |
| 3 |
|
xpcfucco2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) ) |
| 4 |
|
xpcfucco2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) ) |
| 5 |
|
xpcfucco2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) ) |
| 6 |
|
xpcfucco2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) ) |
| 7 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 ) |
| 8 |
7
|
fucbas |
⊢ ( 𝐵 Func 𝐶 ) = ( Base ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 10 |
9
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 11 |
|
eqid |
⊢ ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 ) |
| 12 |
7 11
|
fuchom |
⊢ ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 13 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 14 |
9 13
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 15 |
11
|
natrcl |
⊢ ( 𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) → ( 𝑀 ∈ ( 𝐵 Func 𝐶 ) ∧ 𝑃 ∈ ( 𝐵 Func 𝐶 ) ) ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐵 Func 𝐶 ) ∧ 𝑃 ∈ ( 𝐵 Func 𝐶 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐵 Func 𝐶 ) ) |
| 18 |
13
|
natrcl |
⊢ ( 𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) → ( 𝑁 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑄 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑄 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 20 |
19
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐷 Func 𝐸 ) ) |
| 21 |
16
|
simprd |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 Func 𝐶 ) ) |
| 22 |
19
|
simprd |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐷 Func 𝐸 ) ) |
| 23 |
|
eqid |
⊢ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 24 |
|
eqid |
⊢ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 25 |
11
|
natrcl |
⊢ ( 𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) → ( 𝑃 ∈ ( 𝐵 Func 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 Func 𝐶 ) ) ) |
| 26 |
5 25
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( 𝐵 Func 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 Func 𝐶 ) ) ) |
| 27 |
26
|
simprd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐵 Func 𝐶 ) ) |
| 28 |
13
|
natrcl |
⊢ ( 𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) → ( 𝑄 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑆 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 29 |
6 28
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑆 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 30 |
29
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝐷 Func 𝐸 ) ) |
| 31 |
1 8 10 12 14 17 20 21 22 23 24 2 27 30 3 4 5 6
|
xpcco2 |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ( 〈 〈 𝑀 , 𝑁 〉 , 〈 𝑃 , 𝑄 〉 〉 𝑂 〈 𝑅 , 𝑆 〉 ) 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐾 ( 〈 𝑀 , 𝑃 〉 ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( 〈 𝑁 , 𝑄 〉 ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) 〉 ) |