Metamath Proof Explorer


Theorem xpcfucco3

Description: Value of composition in the binary product of categories of functors; expressed explicitly. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
xpcfucco2.o 𝑂 = ( comp ‘ 𝑇 )
xpcfucco2.f ( 𝜑𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) )
xpcfucco2.g ( 𝜑𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) )
xpcfucco2.k ( 𝜑𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) )
xpcfucco2.l ( 𝜑𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) )
xpcfucco3.x 𝑋 = ( Base ‘ 𝐵 )
xpcfucco3.y 𝑌 = ( Base ‘ 𝐷 )
xpcfucco3.o1 · = ( comp ‘ 𝐶 )
xpcfucco3.o2 = ( comp ‘ 𝐸 )
Assertion xpcfucco3 ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑥𝑋 ↦ ( ( 𝐾𝑥 ) ( ⟨ ( ( 1st𝑀 ) ‘ 𝑥 ) , ( ( 1st𝑃 ) ‘ 𝑥 ) ⟩ · ( ( 1st𝑅 ) ‘ 𝑥 ) ) ( 𝐹𝑥 ) ) ) , ( 𝑦𝑌 ↦ ( ( 𝐿𝑦 ) ( ⟨ ( ( 1st𝑁 ) ‘ 𝑦 ) , ( ( 1st𝑄 ) ‘ 𝑦 ) ⟩ ( ( 1st𝑆 ) ‘ 𝑦 ) ) ( 𝐺𝑦 ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 xpcfucco2.o 𝑂 = ( comp ‘ 𝑇 )
3 xpcfucco2.f ( 𝜑𝐹 ∈ ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) )
4 xpcfucco2.g ( 𝜑𝐺 ∈ ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) )
5 xpcfucco2.k ( 𝜑𝐾 ∈ ( 𝑃 ( 𝐵 Nat 𝐶 ) 𝑅 ) )
6 xpcfucco2.l ( 𝜑𝐿 ∈ ( 𝑄 ( 𝐷 Nat 𝐸 ) 𝑆 ) )
7 xpcfucco3.x 𝑋 = ( Base ‘ 𝐵 )
8 xpcfucco3.y 𝑌 = ( Base ‘ 𝐷 )
9 xpcfucco3.o1 · = ( comp ‘ 𝐶 )
10 xpcfucco3.o2 = ( comp ‘ 𝐸 )
11 1 2 3 4 5 6 xpcfucco2 ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ⟩ )
12 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
13 eqid ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 )
14 eqid ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) = ( comp ‘ ( 𝐵 FuncCat 𝐶 ) )
15 12 13 7 9 14 3 5 fucco ( 𝜑 → ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) = ( 𝑥𝑋 ↦ ( ( 𝐾𝑥 ) ( ⟨ ( ( 1st𝑀 ) ‘ 𝑥 ) , ( ( 1st𝑃 ) ‘ 𝑥 ) ⟩ · ( ( 1st𝑅 ) ‘ 𝑥 ) ) ( 𝐹𝑥 ) ) ) )
16 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
17 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
18 eqid ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( comp ‘ ( 𝐷 FuncCat 𝐸 ) )
19 16 17 8 10 18 4 6 fucco ( 𝜑 → ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) = ( 𝑦𝑌 ↦ ( ( 𝐿𝑦 ) ( ⟨ ( ( 1st𝑁 ) ‘ 𝑦 ) , ( ( 1st𝑄 ) ‘ 𝑦 ) ⟩ ( ( 1st𝑆 ) ‘ 𝑦 ) ) ( 𝐺𝑦 ) ) ) )
20 15 19 opeq12d ( 𝜑 → ⟨ ( 𝐾 ( ⟨ 𝑀 , 𝑃 ⟩ ( comp ‘ ( 𝐵 FuncCat 𝐶 ) ) 𝑅 ) 𝐹 ) , ( 𝐿 ( ⟨ 𝑁 , 𝑄 ⟩ ( comp ‘ ( 𝐷 FuncCat 𝐸 ) ) 𝑆 ) 𝐺 ) ⟩ = ⟨ ( 𝑥𝑋 ↦ ( ( 𝐾𝑥 ) ( ⟨ ( ( 1st𝑀 ) ‘ 𝑥 ) , ( ( 1st𝑃 ) ‘ 𝑥 ) ⟩ · ( ( 1st𝑅 ) ‘ 𝑥 ) ) ( 𝐹𝑥 ) ) ) , ( 𝑦𝑌 ↦ ( ( 𝐿𝑦 ) ( ⟨ ( ( 1st𝑁 ) ‘ 𝑦 ) , ( ( 1st𝑄 ) ‘ 𝑦 ) ⟩ ( ( 1st𝑆 ) ‘ 𝑦 ) ) ( 𝐺𝑦 ) ) ) ⟩ )
21 11 20 eqtrd ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ( ⟨ ⟨ 𝑀 , 𝑁 ⟩ , ⟨ 𝑃 , 𝑄 ⟩ ⟩ 𝑂𝑅 , 𝑆 ⟩ ) ⟨ 𝐹 , 𝐺 ⟩ ) = ⟨ ( 𝑥𝑋 ↦ ( ( 𝐾𝑥 ) ( ⟨ ( ( 1st𝑀 ) ‘ 𝑥 ) , ( ( 1st𝑃 ) ‘ 𝑥 ) ⟩ · ( ( 1st𝑅 ) ‘ 𝑥 ) ) ( 𝐹𝑥 ) ) ) , ( 𝑦𝑌 ↦ ( ( 𝐿𝑦 ) ( ⟨ ( ( 1st𝑁 ) ‘ 𝑦 ) , ( ( 1st𝑄 ) ‘ 𝑦 ) ⟩ ( ( 1st𝑆 ) ‘ 𝑦 ) ) ( 𝐺𝑦 ) ) ) ⟩ )