Metamath Proof Explorer


Theorem fucocolem3

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
fucocolem2.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
fucocolem2.ot · = ( comp ‘ 𝑇 )
fucocolem2.od = ( comp ‘ 𝐷 )
Assertion fucocolem3 ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
7 fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
8 fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
9 fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
10 fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
11 fucocolem2.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
12 fucocolem2.ot · = ( comp ‘ 𝑇 )
13 fucocolem2.od = ( comp ‘ 𝐷 )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 fucocolem2 ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) ) )
15 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
16 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
17 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
18 relfunc Rel ( 𝐷 Func 𝐸 )
19 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
20 19 natrcl ( 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
21 1 20 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
22 21 simpld ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
23 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
24 18 22 23 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
25 24 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
26 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
27 relfunc Rel ( 𝐶 Func 𝐷 )
28 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
29 28 natrcl ( 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
30 2 29 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
31 30 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
32 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
33 27 31 32 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
34 26 15 33 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
35 34 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
36 30 simprd ( 𝜑𝐿 ∈ ( 𝐶 Func 𝐷 ) )
37 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
38 27 36 37 sylancr ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
39 26 15 38 funcf1 ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
40 39 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐿 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
41 28 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
42 4 41 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
43 42 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
44 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
45 27 43 44 sylancr ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
46 26 15 45 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
47 46 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝑁 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
48 28 2 nat1st2nd ( 𝜑𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ) )
49 48 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ) )
50 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
51 28 49 26 16 50 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑆𝑥 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) )
52 28 4 nat1st2nd ( 𝜑𝑉 ∈ ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ) )
53 52 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑉 ∈ ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ) )
54 28 53 26 16 50 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑉𝑥 ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
55 15 16 13 17 25 35 40 47 51 54 funcco ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) = ( ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) )
56 55 oveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) = ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
57 1 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
58 2 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
59 3 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
60 4 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
61 22 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐷 Func 𝐸 ) )
62 43 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑁 ∈ ( 𝐶 Func 𝐷 ) )
63 19 1 nat1st2nd ( 𝜑𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
64 63 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
65 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
66 19 64 15 65 47 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
67 15 16 65 25 40 47 funcf2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) : ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
68 67 54 ffvelcdmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
69 57 58 59 60 50 61 62 66 68 fucocolem1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
70 56 69 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
71 70 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( ( 𝑉𝑥 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐿 ) ‘ 𝑥 ) ⟩ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( 𝑆𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )
72 14 71 eqtrd ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )