Metamath Proof Explorer


Theorem fucocolem4

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
fucoco.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
fucoco.oq = ( comp ‘ 𝑄 )
Assertion fucocolem4 ( 𝜑 → ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
7 fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
8 fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
9 fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
10 fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
11 fucoco.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
12 fucoco.oq = ( comp ‘ 𝑄 )
13 eqid ( 𝐶 Nat 𝐸 ) = ( 𝐶 Nat 𝐸 )
14 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
15 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
16 9 fveq2d ( 𝜑 → ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) = ( ( 𝑋 𝑃 𝑌 ) ‘ ⟨ 𝑅 , 𝑆 ⟩ ) )
17 df-ov ( 𝑅 ( 𝑋 𝑃 𝑌 ) 𝑆 ) = ( ( 𝑋 𝑃 𝑌 ) ‘ ⟨ 𝑅 , 𝑆 ⟩ )
18 16 17 eqtr4di ( 𝜑 → ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) = ( 𝑅 ( 𝑋 𝑃 𝑌 ) 𝑆 ) )
19 5 2 1 6 7 fuco22nat ( 𝜑 → ( 𝑅 ( 𝑋 𝑃 𝑌 ) 𝑆 ) ∈ ( ( 𝑂𝑋 ) ( 𝐶 Nat 𝐸 ) ( 𝑂𝑌 ) ) )
20 18 19 eqeltrd ( 𝜑 → ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ∈ ( ( 𝑂𝑋 ) ( 𝐶 Nat 𝐸 ) ( 𝑂𝑌 ) ) )
21 10 fveq2d ( 𝜑 → ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) = ( ( 𝑌 𝑃 𝑍 ) ‘ ⟨ 𝑈 , 𝑉 ⟩ ) )
22 df-ov ( 𝑈 ( 𝑌 𝑃 𝑍 ) 𝑉 ) = ( ( 𝑌 𝑃 𝑍 ) ‘ ⟨ 𝑈 , 𝑉 ⟩ )
23 21 22 eqtr4di ( 𝜑 → ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) = ( 𝑈 ( 𝑌 𝑃 𝑍 ) 𝑉 ) )
24 5 4 3 7 8 fuco22nat ( 𝜑 → ( 𝑈 ( 𝑌 𝑃 𝑍 ) 𝑉 ) ∈ ( ( 𝑂𝑌 ) ( 𝐶 Nat 𝐸 ) ( 𝑂𝑍 ) ) )
25 23 24 eqeltrd ( 𝜑 → ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ∈ ( ( 𝑂𝑌 ) ( 𝐶 Nat 𝐸 ) ( 𝑂𝑍 ) ) )
26 11 13 14 15 12 20 25 fucco ( 𝜑 → ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ‘ 𝑥 ) ( ⟨ ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) , ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) ) ( ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ‘ 𝑥 ) ) ) )
27 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
28 27 natrcl ( 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
29 2 28 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
30 29 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
31 30 func1st2nd ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
32 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
33 32 natrcl ( 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
34 1 33 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
35 34 simpld ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
36 35 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
37 relfunc Rel ( 𝐷 Func 𝐸 )
38 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐹 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
39 37 35 38 sylancr ( 𝜑𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
40 relfunc Rel ( 𝐶 Func 𝐷 )
41 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
42 40 30 41 sylancr ( 𝜑𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
43 39 42 opeq12d ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ = ⟨ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ , ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ⟩ )
44 6 43 eqtrd ( 𝜑𝑋 = ⟨ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ , ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ⟩ )
45 5 31 36 44 fuco111 ( 𝜑 → ( 1st ‘ ( 𝑂𝑋 ) ) = ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) )
46 45 fveq1d ( 𝜑 → ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) = ( ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ‘ 𝑥 ) )
47 46 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) = ( ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ‘ 𝑥 ) )
48 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
49 14 48 31 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
50 49 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
51 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
52 50 51 fvco3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) )
53 47 52 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) )
54 29 simprd ( 𝜑𝐿 ∈ ( 𝐶 Func 𝐷 ) )
55 54 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
56 34 simprd ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
57 56 func1st2nd ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
58 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
59 37 56 58 sylancr ( 𝜑𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
60 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐿 = ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ )
61 40 54 60 sylancr ( 𝜑𝐿 = ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ )
62 59 61 opeq12d ( 𝜑 → ⟨ 𝐾 , 𝐿 ⟩ = ⟨ ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ , ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ⟩ )
63 7 62 eqtrd ( 𝜑𝑌 = ⟨ ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ , ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ⟩ )
64 5 55 57 63 fuco111 ( 𝜑 → ( 1st ‘ ( 𝑂𝑌 ) ) = ( ( 1st𝐾 ) ∘ ( 1st𝐿 ) ) )
65 64 fveq1d ( 𝜑 → ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) = ( ( ( 1st𝐾 ) ∘ ( 1st𝐿 ) ) ‘ 𝑥 ) )
66 65 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) = ( ( ( 1st𝐾 ) ∘ ( 1st𝐿 ) ) ‘ 𝑥 ) )
67 14 48 55 funcf1 ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
68 67 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
69 68 51 fvco3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐾 ) ∘ ( 1st𝐿 ) ) ‘ 𝑥 ) = ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) )
70 66 69 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) = ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) )
71 53 70 opeq12d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ⟨ ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) , ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ )
72 27 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
73 4 72 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
74 73 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
75 74 func1st2nd ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
76 32 natrcl ( 𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
77 3 76 syl ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) )
78 77 simprd ( 𝜑𝑀 ∈ ( 𝐷 Func 𝐸 ) )
79 78 func1st2nd ( 𝜑 → ( 1st𝑀 ) ( 𝐷 Func 𝐸 ) ( 2nd𝑀 ) )
80 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝑀 ∈ ( 𝐷 Func 𝐸 ) ) → 𝑀 = ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ )
81 37 78 80 sylancr ( 𝜑𝑀 = ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ )
82 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑁 = ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ )
83 40 74 82 sylancr ( 𝜑𝑁 = ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ )
84 81 83 opeq12d ( 𝜑 → ⟨ 𝑀 , 𝑁 ⟩ = ⟨ ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ , ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ⟩ )
85 8 84 eqtrd ( 𝜑𝑍 = ⟨ ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ , ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ⟩ )
86 5 75 79 85 fuco111 ( 𝜑 → ( 1st ‘ ( 𝑂𝑍 ) ) = ( ( 1st𝑀 ) ∘ ( 1st𝑁 ) ) )
87 86 fveq1d ( 𝜑 → ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) = ( ( ( 1st𝑀 ) ∘ ( 1st𝑁 ) ) ‘ 𝑥 ) )
88 87 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) = ( ( ( 1st𝑀 ) ∘ ( 1st𝑁 ) ) ‘ 𝑥 ) )
89 14 48 75 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
90 89 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
91 90 51 fvco3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝑀 ) ∘ ( 1st𝑁 ) ) ‘ 𝑥 ) = ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
92 88 91 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) = ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) )
93 71 92 oveq12d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ⟨ ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) , ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) )
94 5 7 8 4 3 fuco22a ( 𝜑 → ( 𝑈 ( 𝑌 𝑃 𝑍 ) 𝑉 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ) )
95 23 94 eqtrd ( 𝜑 → ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ) )
96 ovexd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ∈ V )
97 95 96 fvmpt2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) )
98 5 6 7 2 1 fuco22a ( 𝜑 → ( 𝑅 ( 𝑋 𝑃 𝑌 ) 𝑆 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
99 18 98 eqtrd ( 𝜑 → ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
100 ovexd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ∈ V )
101 99 100 fvmpt2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) )
102 93 97 101 oveq123d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ‘ 𝑥 ) ( ⟨ ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) , ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) ) ( ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) )
103 102 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ‘ 𝑥 ) ( ⟨ ( ( 1st ‘ ( 𝑂𝑋 ) ) ‘ 𝑥 ) , ( ( 1st ‘ ( 𝑂𝑌 ) ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( 𝑂𝑍 ) ) ‘ 𝑥 ) ) ( ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )
104 26 103 eqtrd ( 𝜑 → ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑥 ) ) ‘ ( 𝑉𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑥 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑥 ) ) ‘ ( 𝑆𝑥 ) ) ) ) ) )