Metamath Proof Explorer


Theorem fucocolem4

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucoco.q Q = C FuncCat E
fucoco.oq ˙ = comp Q
Assertion fucocolem4 φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucoco.q Q = C FuncCat E
12 fucoco.oq ˙ = comp Q
13 eqid C Nat E = C Nat E
14 eqid Base C = Base C
15 eqid comp E = comp E
16 9 fveq2d φ X P Y A = X P Y R S
17 df-ov R X P Y S = X P Y R S
18 16 17 eqtr4di φ X P Y A = R X P Y S
19 5 2 1 6 7 fuco22nat φ R X P Y S O X C Nat E O Y
20 18 19 eqeltrd φ X P Y A O X C Nat E O Y
21 10 fveq2d φ Y P Z B = Y P Z U V
22 df-ov U Y P Z V = Y P Z U V
23 21 22 eqtr4di φ Y P Z B = U Y P Z V
24 5 4 3 7 8 fuco22nat φ U Y P Z V O Y C Nat E O Z
25 23 24 eqeltrd φ Y P Z B O Y C Nat E O Z
26 11 13 14 15 12 20 25 fucco φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x
27 relfunc Rel C Func D
28 eqid C Nat D = C Nat D
29 28 natrcl S G C Nat D L G C Func D L C Func D
30 2 29 syl φ G C Func D L C Func D
31 30 simpld φ G C Func D
32 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
33 27 31 32 sylancr φ 1 st G C Func D 2 nd G
34 relfunc Rel D Func E
35 eqid D Nat E = D Nat E
36 35 natrcl R F D Nat E K F D Func E K D Func E
37 1 36 syl φ F D Func E K D Func E
38 37 simpld φ F D Func E
39 1st2ndbr Rel D Func E F D Func E 1 st F D Func E 2 nd F
40 34 38 39 sylancr φ 1 st F D Func E 2 nd F
41 1st2nd Rel D Func E F D Func E F = 1 st F 2 nd F
42 34 38 41 sylancr φ F = 1 st F 2 nd F
43 1st2nd Rel C Func D G C Func D G = 1 st G 2 nd G
44 27 31 43 sylancr φ G = 1 st G 2 nd G
45 42 44 opeq12d φ F G = 1 st F 2 nd F 1 st G 2 nd G
46 6 45 eqtrd φ X = 1 st F 2 nd F 1 st G 2 nd G
47 5 33 40 46 fuco111 φ 1 st O X = 1 st F 1 st G
48 47 fveq1d φ 1 st O X x = 1 st F 1 st G x
49 48 adantr φ x Base C 1 st O X x = 1 st F 1 st G x
50 eqid Base D = Base D
51 14 50 33 funcf1 φ 1 st G : Base C Base D
52 51 adantr φ x Base C 1 st G : Base C Base D
53 simpr φ x Base C x Base C
54 52 53 fvco3d φ x Base C 1 st F 1 st G x = 1 st F 1 st G x
55 49 54 eqtrd φ x Base C 1 st O X x = 1 st F 1 st G x
56 30 simprd φ L C Func D
57 1st2ndbr Rel C Func D L C Func D 1 st L C Func D 2 nd L
58 27 56 57 sylancr φ 1 st L C Func D 2 nd L
59 37 simprd φ K D Func E
60 1st2ndbr Rel D Func E K D Func E 1 st K D Func E 2 nd K
61 34 59 60 sylancr φ 1 st K D Func E 2 nd K
62 1st2nd Rel D Func E K D Func E K = 1 st K 2 nd K
63 34 59 62 sylancr φ K = 1 st K 2 nd K
64 1st2nd Rel C Func D L C Func D L = 1 st L 2 nd L
65 27 56 64 sylancr φ L = 1 st L 2 nd L
66 63 65 opeq12d φ K L = 1 st K 2 nd K 1 st L 2 nd L
67 7 66 eqtrd φ Y = 1 st K 2 nd K 1 st L 2 nd L
68 5 58 61 67 fuco111 φ 1 st O Y = 1 st K 1 st L
69 68 fveq1d φ 1 st O Y x = 1 st K 1 st L x
70 69 adantr φ x Base C 1 st O Y x = 1 st K 1 st L x
71 14 50 58 funcf1 φ 1 st L : Base C Base D
72 71 adantr φ x Base C 1 st L : Base C Base D
73 72 53 fvco3d φ x Base C 1 st K 1 st L x = 1 st K 1 st L x
74 70 73 eqtrd φ x Base C 1 st O Y x = 1 st K 1 st L x
75 55 74 opeq12d φ x Base C 1 st O X x 1 st O Y x = 1 st F 1 st G x 1 st K 1 st L x
76 28 natrcl V L C Nat D N L C Func D N C Func D
77 4 76 syl φ L C Func D N C Func D
78 77 simprd φ N C Func D
79 1st2ndbr Rel C Func D N C Func D 1 st N C Func D 2 nd N
80 27 78 79 sylancr φ 1 st N C Func D 2 nd N
81 35 natrcl U K D Nat E M K D Func E M D Func E
82 3 81 syl φ K D Func E M D Func E
83 82 simprd φ M D Func E
84 1st2ndbr Rel D Func E M D Func E 1 st M D Func E 2 nd M
85 34 83 84 sylancr φ 1 st M D Func E 2 nd M
86 1st2nd Rel D Func E M D Func E M = 1 st M 2 nd M
87 34 83 86 sylancr φ M = 1 st M 2 nd M
88 1st2nd Rel C Func D N C Func D N = 1 st N 2 nd N
89 27 78 88 sylancr φ N = 1 st N 2 nd N
90 87 89 opeq12d φ M N = 1 st M 2 nd M 1 st N 2 nd N
91 8 90 eqtrd φ Z = 1 st M 2 nd M 1 st N 2 nd N
92 5 80 85 91 fuco111 φ 1 st O Z = 1 st M 1 st N
93 92 fveq1d φ 1 st O Z x = 1 st M 1 st N x
94 93 adantr φ x Base C 1 st O Z x = 1 st M 1 st N x
95 14 50 80 funcf1 φ 1 st N : Base C Base D
96 95 adantr φ x Base C 1 st N : Base C Base D
97 96 53 fvco3d φ x Base C 1 st M 1 st N x = 1 st M 1 st N x
98 94 97 eqtrd φ x Base C 1 st O Z x = 1 st M 1 st N x
99 75 98 oveq12d φ x Base C 1 st O X x 1 st O Y x comp E 1 st O Z x = 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x
100 5 7 8 4 3 fuco22a φ U Y P Z V = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
101 23 100 eqtrd φ Y P Z B = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
102 ovexd φ x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x V
103 101 102 fvmpt2d φ x Base C Y P Z B x = U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x
104 5 6 7 2 1 fuco22a φ R X P Y S = x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
105 18 104 eqtrd φ X P Y A = x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
106 ovexd φ x Base C R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x V
107 105 106 fvmpt2d φ x Base C X P Y A x = R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
108 99 103 107 oveq123d φ x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x = U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
109 108 mpteq2dva φ x Base C Y P Z B x 1 st O X x 1 st O Y x comp E 1 st O Z x X P Y A x = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x
110 26 109 eqtrd φ Y P Z B O X O Y ˙ O Z X P Y A = x Base C U 1 st N x 1 st K 1 st L x 1 st K 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd K 1 st N x V x 1 st F 1 st G x 1 st K 1 st L x comp E 1 st M 1 st N x R 1 st L x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st L x 1 st G x 2 nd F 1 st L x S x