Metamath Proof Explorer


Theorem fuco22a

Description: The morphism part of the functor composition bifunctor. See also fuco22 . (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses fuco22a.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco22a.u φ U = K F
fuco22a.v φ V = R M
fuco22a.a φ A F C Nat D M
fuco22a.b φ B K D Nat E R
Assertion fuco22a φ B U P V A = x Base C B 1 st M x 1 st K 1 st F x 1 st K 1 st M x comp E 1 st R 1 st M x 1 st F x 2 nd K 1 st M x A x

Proof

Step Hyp Ref Expression
1 fuco22a.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco22a.u φ U = K F
3 fuco22a.v φ V = R M
4 fuco22a.a φ A F C Nat D M
5 fuco22a.b φ B K D Nat E R
6 relfunc Rel D Func E
7 df-rel Rel D Func E D Func E V × V
8 6 7 mpbi D Func E V × V
9 eqid D Nat E = D Nat E
10 9 natrcl B K D Nat E R K D Func E R D Func E
11 5 10 syl φ K D Func E R D Func E
12 11 simpld φ K D Func E
13 8 12 sselid φ K V × V
14 1st2ndb K V × V K = 1 st K 2 nd K
15 13 14 sylib φ K = 1 st K 2 nd K
16 relfunc Rel C Func D
17 df-rel Rel C Func D C Func D V × V
18 16 17 mpbi C Func D V × V
19 eqid C Nat D = C Nat D
20 19 natrcl A F C Nat D M F C Func D M C Func D
21 4 20 syl φ F C Func D M C Func D
22 21 simpld φ F C Func D
23 18 22 sselid φ F V × V
24 1st2ndb F V × V F = 1 st F 2 nd F
25 23 24 sylib φ F = 1 st F 2 nd F
26 15 25 opeq12d φ K F = 1 st K 2 nd K 1 st F 2 nd F
27 2 26 eqtrd φ U = 1 st K 2 nd K 1 st F 2 nd F
28 11 simprd φ R D Func E
29 8 28 sselid φ R V × V
30 1st2ndb R V × V R = 1 st R 2 nd R
31 29 30 sylib φ R = 1 st R 2 nd R
32 21 simprd φ M C Func D
33 18 32 sselid φ M V × V
34 1st2ndb M V × V M = 1 st M 2 nd M
35 33 34 sylib φ M = 1 st M 2 nd M
36 31 35 opeq12d φ R M = 1 st R 2 nd R 1 st M 2 nd M
37 3 36 eqtrd φ V = 1 st R 2 nd R 1 st M 2 nd M
38 19 4 nat1st2nd φ A 1 st F 2 nd F C Nat D 1 st M 2 nd M
39 9 5 nat1st2nd φ B 1 st K 2 nd K D Nat E 1 st R 2 nd R
40 1 27 37 38 39 fuco22 φ B U P V A = x Base C B 1 st M x 1 st K 1 st F x 1 st K 1 st M x comp E 1 st R 1 st M x 1 st F x 2 nd K 1 st M x A x