Step |
Hyp |
Ref |
Expression |
1 |
|
fuco22a.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fuco22a.u |
|- ( ph -> U = <. K , F >. ) |
3 |
|
fuco22a.v |
|- ( ph -> V = <. R , M >. ) |
4 |
|
fuco22a.a |
|- ( ph -> A e. ( F ( C Nat D ) M ) ) |
5 |
|
fuco22a.b |
|- ( ph -> B e. ( K ( D Nat E ) R ) ) |
6 |
|
relfunc |
|- Rel ( D Func E ) |
7 |
|
df-rel |
|- ( Rel ( D Func E ) <-> ( D Func E ) C_ ( _V X. _V ) ) |
8 |
6 7
|
mpbi |
|- ( D Func E ) C_ ( _V X. _V ) |
9 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
10 |
9
|
natrcl |
|- ( B e. ( K ( D Nat E ) R ) -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) ) |
11 |
5 10
|
syl |
|- ( ph -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) ) |
12 |
11
|
simpld |
|- ( ph -> K e. ( D Func E ) ) |
13 |
8 12
|
sselid |
|- ( ph -> K e. ( _V X. _V ) ) |
14 |
|
1st2ndb |
|- ( K e. ( _V X. _V ) <-> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
15 |
13 14
|
sylib |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
16 |
|
relfunc |
|- Rel ( C Func D ) |
17 |
|
df-rel |
|- ( Rel ( C Func D ) <-> ( C Func D ) C_ ( _V X. _V ) ) |
18 |
16 17
|
mpbi |
|- ( C Func D ) C_ ( _V X. _V ) |
19 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
20 |
19
|
natrcl |
|- ( A e. ( F ( C Nat D ) M ) -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) ) |
21 |
4 20
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) ) |
22 |
21
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
23 |
18 22
|
sselid |
|- ( ph -> F e. ( _V X. _V ) ) |
24 |
|
1st2ndb |
|- ( F e. ( _V X. _V ) <-> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
25 |
23 24
|
sylib |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
26 |
15 25
|
opeq12d |
|- ( ph -> <. K , F >. = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
27 |
2 26
|
eqtrd |
|- ( ph -> U = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. ) |
28 |
11
|
simprd |
|- ( ph -> R e. ( D Func E ) ) |
29 |
8 28
|
sselid |
|- ( ph -> R e. ( _V X. _V ) ) |
30 |
|
1st2ndb |
|- ( R e. ( _V X. _V ) <-> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
31 |
29 30
|
sylib |
|- ( ph -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
32 |
21
|
simprd |
|- ( ph -> M e. ( C Func D ) ) |
33 |
18 32
|
sselid |
|- ( ph -> M e. ( _V X. _V ) ) |
34 |
|
1st2ndb |
|- ( M e. ( _V X. _V ) <-> M = <. ( 1st ` M ) , ( 2nd ` M ) >. ) |
35 |
33 34
|
sylib |
|- ( ph -> M = <. ( 1st ` M ) , ( 2nd ` M ) >. ) |
36 |
31 35
|
opeq12d |
|- ( ph -> <. R , M >. = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. ) |
37 |
3 36
|
eqtrd |
|- ( ph -> V = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. ) |
38 |
19 4
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C Nat D ) <. ( 1st ` M ) , ( 2nd ` M ) >. ) ) |
39 |
9 5
|
nat1st2nd |
|- ( ph -> B e. ( <. ( 1st ` K ) , ( 2nd ` K ) >. ( D Nat E ) <. ( 1st ` R ) , ( 2nd ` R ) >. ) ) |
40 |
1 27 37 38 39
|
fuco22 |
|- ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( ( 1st ` M ) ` x ) ) ( <. ( ( 1st ` K ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` K ) ` ( ( 1st ` M ) ` x ) ) >. ( comp ` E ) ( ( 1st ` R ) ` ( ( 1st ` M ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` K ) ( ( 1st ` M ) ` x ) ) ` ( A ` x ) ) ) ) ) |