| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuco22a.o | 
							 |-  ( ph -> ( <. C , D >. o.F E ) = <. O , P >. )  | 
						
						
							| 2 | 
							
								
							 | 
							fuco22a.u | 
							 |-  ( ph -> U = <. K , F >. )  | 
						
						
							| 3 | 
							
								
							 | 
							fuco22a.v | 
							 |-  ( ph -> V = <. R , M >. )  | 
						
						
							| 4 | 
							
								
							 | 
							fuco22a.a | 
							 |-  ( ph -> A e. ( F ( C Nat D ) M ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fuco22a.b | 
							 |-  ( ph -> B e. ( K ( D Nat E ) R ) )  | 
						
						
							| 6 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( D Func E )  | 
						
						
							| 7 | 
							
								
							 | 
							df-rel | 
							 |-  ( Rel ( D Func E ) <-> ( D Func E ) C_ ( _V X. _V ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpbi | 
							 |-  ( D Func E ) C_ ( _V X. _V )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( D Nat E ) = ( D Nat E )  | 
						
						
							| 10 | 
							
								9
							 | 
							natrcl | 
							 |-  ( B e. ( K ( D Nat E ) R ) -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							syl | 
							 |-  ( ph -> ( K e. ( D Func E ) /\ R e. ( D Func E ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							 |-  ( ph -> K e. ( D Func E ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							sselid | 
							 |-  ( ph -> K e. ( _V X. _V ) )  | 
						
						
							| 14 | 
							
								
							 | 
							1st2ndb | 
							 |-  ( K e. ( _V X. _V ) <-> K = <. ( 1st ` K ) , ( 2nd ` K ) >. )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylib | 
							 |-  ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. )  | 
						
						
							| 16 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func D )  | 
						
						
							| 17 | 
							
								
							 | 
							df-rel | 
							 |-  ( Rel ( C Func D ) <-> ( C Func D ) C_ ( _V X. _V ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							mpbi | 
							 |-  ( C Func D ) C_ ( _V X. _V )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( C Nat D ) = ( C Nat D )  | 
						
						
							| 20 | 
							
								19
							 | 
							natrcl | 
							 |-  ( A e. ( F ( C Nat D ) M ) -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							syl | 
							 |-  ( ph -> ( F e. ( C Func D ) /\ M e. ( C Func D ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							simpld | 
							 |-  ( ph -> F e. ( C Func D ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							sselid | 
							 |-  ( ph -> F e. ( _V X. _V ) )  | 
						
						
							| 24 | 
							
								
							 | 
							1st2ndb | 
							 |-  ( F e. ( _V X. _V ) <-> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							sylib | 
							 |-  ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. )  | 
						
						
							| 26 | 
							
								15 25
							 | 
							opeq12d | 
							 |-  ( ph -> <. K , F >. = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							eqtrd | 
							 |-  ( ph -> U = <. <. ( 1st ` K ) , ( 2nd ` K ) >. , <. ( 1st ` F ) , ( 2nd ` F ) >. >. )  | 
						
						
							| 28 | 
							
								11
							 | 
							simprd | 
							 |-  ( ph -> R e. ( D Func E ) )  | 
						
						
							| 29 | 
							
								8 28
							 | 
							sselid | 
							 |-  ( ph -> R e. ( _V X. _V ) )  | 
						
						
							| 30 | 
							
								
							 | 
							1st2ndb | 
							 |-  ( R e. ( _V X. _V ) <-> R = <. ( 1st ` R ) , ( 2nd ` R ) >. )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylib | 
							 |-  ( ph -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. )  | 
						
						
							| 32 | 
							
								21
							 | 
							simprd | 
							 |-  ( ph -> M e. ( C Func D ) )  | 
						
						
							| 33 | 
							
								18 32
							 | 
							sselid | 
							 |-  ( ph -> M e. ( _V X. _V ) )  | 
						
						
							| 34 | 
							
								
							 | 
							1st2ndb | 
							 |-  ( M e. ( _V X. _V ) <-> M = <. ( 1st ` M ) , ( 2nd ` M ) >. )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							sylib | 
							 |-  ( ph -> M = <. ( 1st ` M ) , ( 2nd ` M ) >. )  | 
						
						
							| 36 | 
							
								31 35
							 | 
							opeq12d | 
							 |-  ( ph -> <. R , M >. = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. )  | 
						
						
							| 37 | 
							
								3 36
							 | 
							eqtrd | 
							 |-  ( ph -> V = <. <. ( 1st ` R ) , ( 2nd ` R ) >. , <. ( 1st ` M ) , ( 2nd ` M ) >. >. )  | 
						
						
							| 38 | 
							
								19 4
							 | 
							nat1st2nd | 
							 |-  ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C Nat D ) <. ( 1st ` M ) , ( 2nd ` M ) >. ) )  | 
						
						
							| 39 | 
							
								9 5
							 | 
							nat1st2nd | 
							 |-  ( ph -> B e. ( <. ( 1st ` K ) , ( 2nd ` K ) >. ( D Nat E ) <. ( 1st ` R ) , ( 2nd ` R ) >. ) )  | 
						
						
							| 40 | 
							
								1 27 37 38 39
							 | 
							fuco22 | 
							 |-  ( ph -> ( B ( U P V ) A ) = ( x e. ( Base ` C ) |-> ( ( B ` ( ( 1st ` M ) ` x ) ) ( <. ( ( 1st ` K ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` K ) ` ( ( 1st ` M ) ` x ) ) >. ( comp ` E ) ( ( 1st ` R ) ` ( ( 1st ` M ) ` x ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` K ) ( ( 1st ` M ) ` x ) ) ` ( A ` x ) ) ) ) )  |