Metamath Proof Explorer


Theorem fucoco

Description: Composition in the source category is mapped to composition in the target. See also fucoco2 . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucoco.q Q = C FuncCat E
fucoco.oq ˙ = comp Q
fucoco.t T = D FuncCat E × c C FuncCat D
fucoco.ot · ˙ = comp T
Assertion fucoco φ X P Z B X Y · ˙ Z A = Y P Z B O X O Y ˙ O Z X P Y A

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucoco.q Q = C FuncCat E
12 fucoco.oq ˙ = comp Q
13 fucoco.t T = D FuncCat E × c C FuncCat D
14 fucoco.ot · ˙ = comp T
15 eqid C Nat D = C Nat D
16 15 4 nat1st2nd φ V 1 st L 2 nd L C Nat D 1 st N 2 nd N
17 16 adantr φ p Base C V 1 st L 2 nd L C Nat D 1 st N 2 nd N
18 eqid D Nat E = D Nat E
19 18 1 nat1st2nd φ R 1 st F 2 nd F D Nat E 1 st K 2 nd K
20 19 adantr φ p Base C R 1 st F 2 nd F D Nat E 1 st K 2 nd K
21 simpr φ p Base C p Base C
22 eqid comp E = comp E
23 17 20 21 22 fuco23alem φ p Base C R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p = 1 st L p 2 nd K 1 st N p V p 1 st F 1 st L p 1 st K 1 st L p comp E 1 st K 1 st N p R 1 st L p
24 23 oveq1d φ p Base C R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p = 1 st L p 2 nd K 1 st N p V p 1 st F 1 st L p 1 st K 1 st L p comp E 1 st K 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p
25 24 oveq2d φ p Base C U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p = U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st L p 1 st K 1 st L p comp E 1 st K 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p
26 1 adantr φ p Base C R F D Nat E K
27 2 adantr φ p Base C S G C Nat D L
28 3 adantr φ p Base C U K D Nat E M
29 4 adantr φ p Base C V L C Nat D N
30 18 natrcl R F D Nat E K F D Func E K D Func E
31 1 30 syl φ F D Func E K D Func E
32 31 simprd φ K D Func E
33 32 adantr φ p Base C K D Func E
34 15 natrcl S G C Nat D L G C Func D L C Func D
35 2 34 syl φ G C Func D L C Func D
36 35 simprd φ L C Func D
37 36 adantr φ p Base C L C Func D
38 eqid Base D = Base D
39 eqid Hom D = Hom D
40 eqid Hom E = Hom E
41 relfunc Rel D Func E
42 1st2ndbr Rel D Func E K D Func E 1 st K D Func E 2 nd K
43 41 32 42 sylancr φ 1 st K D Func E 2 nd K
44 43 adantr φ p Base C 1 st K D Func E 2 nd K
45 eqid Base C = Base C
46 relfunc Rel C Func D
47 1st2ndbr Rel C Func D L C Func D 1 st L C Func D 2 nd L
48 46 36 47 sylancr φ 1 st L C Func D 2 nd L
49 45 38 48 funcf1 φ 1 st L : Base C Base D
50 49 ffvelcdmda φ p Base C 1 st L p Base D
51 15 natrcl V L C Nat D N L C Func D N C Func D
52 4 51 syl φ L C Func D N C Func D
53 52 simprd φ N C Func D
54 1st2ndbr Rel C Func D N C Func D 1 st N C Func D 2 nd N
55 46 53 54 sylancr φ 1 st N C Func D 2 nd N
56 45 38 55 funcf1 φ 1 st N : Base C Base D
57 56 ffvelcdmda φ p Base C 1 st N p Base D
58 38 39 40 44 50 57 funcf2 φ p Base C 1 st L p 2 nd K 1 st N p : 1 st L p Hom D 1 st N p 1 st K 1 st L p Hom E 1 st K 1 st N p
59 15 17 45 39 21 natcl φ p Base C V p 1 st L p Hom D 1 st N p
60 58 59 ffvelcdmd φ p Base C 1 st L p 2 nd K 1 st N p V p 1 st K 1 st L p Hom E 1 st K 1 st N p
61 18 20 38 40 50 natcl φ p Base C R 1 st L p 1 st F 1 st L p Hom E 1 st K 1 st L p
62 26 27 28 29 21 33 37 60 61 fucocolem1 φ p Base C U 1 st N p 1 st K 1 st L p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st G p 1 st K 1 st L p comp E 1 st M 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st L p 1 st G p 2 nd F 1 st L p S p = U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st L p 1 st K 1 st L p comp E 1 st K 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p
63 25 62 eqtr4d φ p Base C U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p = U 1 st N p 1 st K 1 st L p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st G p 1 st K 1 st L p comp E 1 st M 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st L p 1 st G p 2 nd F 1 st L p S p
64 63 mpteq2dva φ p Base C U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p = p Base C U 1 st N p 1 st K 1 st L p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st G p 1 st K 1 st L p comp E 1 st M 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st L p 1 st G p 2 nd F 1 st L p S p
65 eqid comp D = comp D
66 1 2 3 4 5 6 7 8 9 10 13 14 65 fucocolem3 φ X P Z B X Y · ˙ Z A = p Base C U 1 st N p 1 st F 1 st G p 1 st K 1 st N p comp E 1 st M 1 st N p R 1 st N p 1 st F 1 st L p 1 st F 1 st N p comp E 1 st K 1 st N p 1 st L p 2 nd F 1 st N p V p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st N p 1 st G p 2 nd F 1 st L p S p
67 1 2 3 4 5 6 7 8 9 10 11 12 fucocolem4 φ Y P Z B O X O Y ˙ O Z X P Y A = p Base C U 1 st N p 1 st K 1 st L p 1 st K 1 st N p comp E 1 st M 1 st N p 1 st L p 2 nd K 1 st N p V p 1 st F 1 st G p 1 st K 1 st L p comp E 1 st M 1 st N p R 1 st L p 1 st F 1 st G p 1 st F 1 st L p comp E 1 st K 1 st L p 1 st G p 2 nd F 1 st L p S p
68 64 66 67 3eqtr4d φ X P Z B X Y · ˙ Z A = Y P Z B O X O Y ˙ O Z X P Y A