Metamath Proof Explorer


Theorem fucocolem3

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucocolem2.t T = D FuncCat E × c C FuncCat D
fucocolem2.ot · ˙ = comp T
fucocolem2.od ˙ = comp D
Assertion fucocolem3 φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucocolem2.t T = D FuncCat E × c C FuncCat D
12 fucocolem2.ot · ˙ = comp T
13 fucocolem2.od ˙ = comp D
14 1 2 3 4 5 6 7 8 9 10 11 12 13 fucocolem2 φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
15 eqid Base D = Base D
16 eqid Hom D = Hom D
17 eqid comp E = comp E
18 relfunc Rel D Func E
19 eqid D Nat E = D Nat E
20 19 natrcl R F D Nat E K F D Func E K D Func E
21 1 20 syl φ F D Func E K D Func E
22 21 simpld φ F D Func E
23 1st2ndbr Rel D Func E F D Func E 1 st F D Func E 2 nd F
24 18 22 23 sylancr φ 1 st F D Func E 2 nd F
25 24 adantr φ x Base C 1 st F D Func E 2 nd F
26 eqid Base C = Base C
27 relfunc Rel C Func D
28 eqid C Nat D = C Nat D
29 28 natrcl S G C Nat D L G C Func D L C Func D
30 2 29 syl φ G C Func D L C Func D
31 30 simpld φ G C Func D
32 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
33 27 31 32 sylancr φ 1 st G C Func D 2 nd G
34 26 15 33 funcf1 φ 1 st G : Base C Base D
35 34 ffvelcdmda φ x Base C 1 st G x Base D
36 30 simprd φ L C Func D
37 1st2ndbr Rel C Func D L C Func D 1 st L C Func D 2 nd L
38 27 36 37 sylancr φ 1 st L C Func D 2 nd L
39 26 15 38 funcf1 φ 1 st L : Base C Base D
40 39 ffvelcdmda φ x Base C 1 st L x Base D
41 28 natrcl V L C Nat D N L C Func D N C Func D
42 4 41 syl φ L C Func D N C Func D
43 42 simprd φ N C Func D
44 1st2ndbr Rel C Func D N C Func D 1 st N C Func D 2 nd N
45 27 43 44 sylancr φ 1 st N C Func D 2 nd N
46 26 15 45 funcf1 φ 1 st N : Base C Base D
47 46 ffvelcdmda φ x Base C 1 st N x Base D
48 28 2 nat1st2nd φ S 1 st G 2 nd G C Nat D 1 st L 2 nd L
49 48 adantr φ x Base C S 1 st G 2 nd G C Nat D 1 st L 2 nd L
50 simpr φ x Base C x Base C
51 28 49 26 16 50 natcl φ x Base C S x 1 st G x Hom D 1 st L x
52 28 4 nat1st2nd φ V 1 st L 2 nd L C Nat D 1 st N 2 nd N
53 52 adantr φ x Base C V 1 st L 2 nd L C Nat D 1 st N 2 nd N
54 28 53 26 16 50 natcl φ x Base C V x 1 st L x Hom D 1 st N x
55 15 16 13 17 25 35 40 47 51 54 funcco φ x Base C 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x
56 55 oveq2d φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x
57 1 adantr φ x Base C R F D Nat E K
58 2 adantr φ x Base C S G C Nat D L
59 3 adantr φ x Base C U K D Nat E M
60 4 adantr φ x Base C V L C Nat D N
61 22 adantr φ x Base C F D Func E
62 43 adantr φ x Base C N C Func D
63 19 1 nat1st2nd φ R 1 st F 2 nd F D Nat E 1 st K 2 nd K
64 63 adantr φ x Base C R 1 st F 2 nd F D Nat E 1 st K 2 nd K
65 eqid Hom E = Hom E
66 19 64 15 65 47 natcl φ x Base C R 1 st N x 1 st F 1 st N x Hom E 1 st K 1 st N x
67 15 16 65 25 40 47 funcf2 φ x Base C 1 st L x 2 nd F 1 st N x : 1 st L x Hom D 1 st N x 1 st F 1 st L x Hom E 1 st F 1 st N x
68 67 54 ffvelcdmd φ x Base C 1 st L x 2 nd F 1 st N x V x 1 st F 1 st L x Hom E 1 st F 1 st N x
69 57 58 59 60 50 61 62 66 68 fucocolem1 φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x = U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
70 56 69 eqtrd φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
71 70 mpteq2dva φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
72 14 71 eqtrd φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x