Metamath Proof Explorer


Theorem fucocolem3

Description: Lemma for fucoco . The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fucoco.r φ R F D Nat E K
fucoco.s φ S G C Nat D L
fucoco.u φ U K D Nat E M
fucoco.v φ V L C Nat D N
fucoco.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoco.x φ X = F G
fucoco.y φ Y = K L
fucoco.z φ Z = M N
fucoco.a φ A = R S
fucoco.b φ B = U V
fucocolem2.t T = D FuncCat E × c C FuncCat D
fucocolem2.ot · ˙ = comp T
fucocolem2.od ˙ = comp D
Assertion fucocolem3 φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x

Proof

Step Hyp Ref Expression
1 fucoco.r φ R F D Nat E K
2 fucoco.s φ S G C Nat D L
3 fucoco.u φ U K D Nat E M
4 fucoco.v φ V L C Nat D N
5 fucoco.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
6 fucoco.x φ X = F G
7 fucoco.y φ Y = K L
8 fucoco.z φ Z = M N
9 fucoco.a φ A = R S
10 fucoco.b φ B = U V
11 fucocolem2.t T = D FuncCat E × c C FuncCat D
12 fucocolem2.ot · ˙ = comp T
13 fucocolem2.od ˙ = comp D
14 1 2 3 4 5 6 7 8 9 10 11 12 13 fucocolem2 φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x
15 eqid Base D = Base D
16 eqid Hom D = Hom D
17 eqid comp E = comp E
18 eqid D Nat E = D Nat E
19 18 natrcl R F D Nat E K F D Func E K D Func E
20 1 19 syl φ F D Func E K D Func E
21 20 simpld φ F D Func E
22 21 func1st2nd φ 1 st F D Func E 2 nd F
23 22 adantr φ x Base C 1 st F D Func E 2 nd F
24 eqid Base C = Base C
25 eqid C Nat D = C Nat D
26 25 natrcl S G C Nat D L G C Func D L C Func D
27 2 26 syl φ G C Func D L C Func D
28 27 simpld φ G C Func D
29 28 func1st2nd φ 1 st G C Func D 2 nd G
30 24 15 29 funcf1 φ 1 st G : Base C Base D
31 30 ffvelcdmda φ x Base C 1 st G x Base D
32 27 simprd φ L C Func D
33 32 func1st2nd φ 1 st L C Func D 2 nd L
34 24 15 33 funcf1 φ 1 st L : Base C Base D
35 34 ffvelcdmda φ x Base C 1 st L x Base D
36 25 natrcl V L C Nat D N L C Func D N C Func D
37 4 36 syl φ L C Func D N C Func D
38 37 simprd φ N C Func D
39 38 func1st2nd φ 1 st N C Func D 2 nd N
40 24 15 39 funcf1 φ 1 st N : Base C Base D
41 40 ffvelcdmda φ x Base C 1 st N x Base D
42 25 2 nat1st2nd φ S 1 st G 2 nd G C Nat D 1 st L 2 nd L
43 42 adantr φ x Base C S 1 st G 2 nd G C Nat D 1 st L 2 nd L
44 simpr φ x Base C x Base C
45 25 43 24 16 44 natcl φ x Base C S x 1 st G x Hom D 1 st L x
46 25 4 nat1st2nd φ V 1 st L 2 nd L C Nat D 1 st N 2 nd N
47 46 adantr φ x Base C V 1 st L 2 nd L C Nat D 1 st N 2 nd N
48 25 47 24 16 44 natcl φ x Base C V x 1 st L x Hom D 1 st N x
49 15 16 13 17 23 31 35 41 45 48 funcco φ x Base C 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x
50 49 oveq2d φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x
51 1 adantr φ x Base C R F D Nat E K
52 2 adantr φ x Base C S G C Nat D L
53 3 adantr φ x Base C U K D Nat E M
54 4 adantr φ x Base C V L C Nat D N
55 21 adantr φ x Base C F D Func E
56 38 adantr φ x Base C N C Func D
57 18 1 nat1st2nd φ R 1 st F 2 nd F D Nat E 1 st K 2 nd K
58 57 adantr φ x Base C R 1 st F 2 nd F D Nat E 1 st K 2 nd K
59 eqid Hom E = Hom E
60 18 58 15 59 41 natcl φ x Base C R 1 st N x 1 st F 1 st N x Hom E 1 st K 1 st N x
61 15 16 59 23 35 41 funcf2 φ x Base C 1 st L x 2 nd F 1 st N x : 1 st L x Hom D 1 st N x 1 st F 1 st L x Hom E 1 st F 1 st N x
62 61 48 ffvelcdmd φ x Base C 1 st L x 2 nd F 1 st N x V x 1 st F 1 st L x Hom E 1 st F 1 st N x
63 51 52 53 54 44 55 56 60 62 fucocolem1 φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st F 1 st N x 1 st G x 2 nd F 1 st L x S x = U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
64 50 63 eqtrd φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
65 64 mpteq2dva φ x Base C U 1 st N x 1 st F 1 st N x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st G x 1 st F 1 st N x comp E 1 st M 1 st N x 1 st G x 2 nd F 1 st N x V x 1 st G x 1 st L x ˙ 1 st N x S x = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x
66 14 65 eqtrd φ X P Z B X Y · ˙ Z A = x Base C U 1 st N x 1 st F 1 st G x 1 st K 1 st N x comp E 1 st M 1 st N x R 1 st N x 1 st F 1 st L x 1 st F 1 st N x comp E 1 st K 1 st N x 1 st L x 2 nd F 1 st N x V x 1 st F 1 st G x 1 st F 1 st L x comp E 1 st K 1 st N x 1 st G x 2 nd F 1 st L x S x