Metamath Proof Explorer


Theorem fucoco

Description: Composition in the source category is mapped to composition in the target. See also fucoco2 . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
fucoco.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
fucoco.oq = ( comp ‘ 𝑄 )
fucoco.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
fucoco.ot · = ( comp ‘ 𝑇 )
Assertion fucoco ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fucoco.r ( 𝜑𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
2 fucoco.s ( 𝜑𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
3 fucoco.u ( 𝜑𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
4 fucoco.v ( 𝜑𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
5 fucoco.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 fucoco.x ( 𝜑𝑋 = ⟨ 𝐹 , 𝐺 ⟩ )
7 fucoco.y ( 𝜑𝑌 = ⟨ 𝐾 , 𝐿 ⟩ )
8 fucoco.z ( 𝜑𝑍 = ⟨ 𝑀 , 𝑁 ⟩ )
9 fucoco.a ( 𝜑𝐴 = ⟨ 𝑅 , 𝑆 ⟩ )
10 fucoco.b ( 𝜑𝐵 = ⟨ 𝑈 , 𝑉 ⟩ )
11 fucoco.q 𝑄 = ( 𝐶 FuncCat 𝐸 )
12 fucoco.oq = ( comp ‘ 𝑄 )
13 fucoco.t 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) )
14 fucoco.ot · = ( comp ‘ 𝑇 )
15 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
16 15 4 nat1st2nd ( 𝜑𝑉 ∈ ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ) )
17 16 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑉 ∈ ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝑁 ) , ( 2nd𝑁 ) ⟩ ) )
18 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
19 18 1 nat1st2nd ( 𝜑𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
20 19 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
21 simpr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑝 ∈ ( Base ‘ 𝐶 ) )
22 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
23 17 20 21 22 fuco23alem ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) = ( ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) )
24 23 oveq1d ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) = ( ( ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) )
25 24 oveq2d ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) )
26 1 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) )
27 2 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) )
28 3 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ ( 𝐾 ( 𝐷 Nat 𝐸 ) 𝑀 ) )
29 4 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) )
30 18 natrcl ( 𝑅 ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐾 ) → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
31 1 30 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) )
32 31 simprd ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
33 32 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝐾 ∈ ( 𝐷 Func 𝐸 ) )
34 15 natrcl ( 𝑆 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐿 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
35 2 34 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) )
36 35 simprd ( 𝜑𝐿 ∈ ( 𝐶 Func 𝐷 ) )
37 36 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → 𝐿 ∈ ( 𝐶 Func 𝐷 ) )
38 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
39 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
40 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
41 relfunc Rel ( 𝐷 Func 𝐸 )
42 1st2ndbr ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
43 41 32 42 sylancr ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
44 43 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
45 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
46 relfunc Rel ( 𝐶 Func 𝐷 )
47 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐿 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
48 46 36 47 sylancr ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐿 ) )
49 45 38 48 funcf1 ( 𝜑 → ( 1st𝐿 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
50 49 ffvelcdmda ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐿 ) ‘ 𝑝 ) ∈ ( Base ‘ 𝐷 ) )
51 15 natrcl ( 𝑉 ∈ ( 𝐿 ( 𝐶 Nat 𝐷 ) 𝑁 ) → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
52 4 51 syl ( 𝜑 → ( 𝐿 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) )
53 52 simprd ( 𝜑𝑁 ∈ ( 𝐶 Func 𝐷 ) )
54 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝑁 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
55 46 53 54 sylancr ( 𝜑 → ( 1st𝑁 ) ( 𝐶 Func 𝐷 ) ( 2nd𝑁 ) )
56 45 38 55 funcf1 ( 𝜑 → ( 1st𝑁 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
57 56 ffvelcdmda ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝑁 ) ‘ 𝑝 ) ∈ ( Base ‘ 𝐷 ) )
58 38 39 40 44 50 57 funcf2 ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) : ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟶ ( ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) )
59 15 17 45 39 21 natcl ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑉𝑝 ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( Hom ‘ 𝐷 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) )
60 58 59 ffvelcdmd ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ∈ ( ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) )
61 18 20 38 40 50 natcl ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) )
62 26 27 28 29 21 33 37 60 61 fucocolem1 ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) = ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) )
63 25 62 eqtr4d ( ( 𝜑𝑝 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) = ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) )
64 63 mpteq2dva ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) ) )
65 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
66 1 2 3 4 5 6 7 8 9 10 13 14 65 fucocolem3 ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( 𝑅 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) ) )
67 1 2 3 4 5 6 7 8 9 10 11 12 fucocolem4 ( 𝜑 → ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( 𝑈 ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐿 ) ‘ 𝑝 ) ( 2nd𝐾 ) ( ( 1st𝑁 ) ‘ 𝑝 ) ) ‘ ( 𝑉𝑝 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝑀 ) ‘ ( ( 1st𝑁 ) ‘ 𝑝 ) ) ) ( ( 𝑅 ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑝 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐿 ) ‘ 𝑝 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑝 ) ( 2nd𝐹 ) ( ( 1st𝐿 ) ‘ 𝑝 ) ) ‘ ( 𝑆𝑝 ) ) ) ) ) )
68 64 66 67 3eqtr4d ( 𝜑 → ( ( 𝑋 𝑃 𝑍 ) ‘ ( 𝐵 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐴 ) ) = ( ( ( 𝑌 𝑃 𝑍 ) ‘ 𝐵 ) ( ⟨ ( 𝑂𝑋 ) , ( 𝑂𝑌 ) ⟩ ( 𝑂𝑍 ) ) ( ( 𝑋 𝑃 𝑌 ) ‘ 𝐴 ) ) )