Metamath Proof Explorer


Theorem fuco23a

Description: The morphism part of the functor composition bifunctor. An alternate definition of o.F . See also fuco23 . (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco23a.a φ A F G C Nat D M N
fuco23a.b φ B K L D Nat E R S
fuco23a.x φ X Base C
fuco23a.p No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco23a.u φ U = K L F G
fuco23a.v φ V = R S M N
fuco23a.o φ ˙ = K F X R F X comp E R M X
Assertion fuco23a φ B U P V A X = F X S M X A X ˙ B F X

Proof

Step Hyp Ref Expression
1 fuco23a.a φ A F G C Nat D M N
2 fuco23a.b φ B K L D Nat E R S
3 fuco23a.x φ X Base C
4 fuco23a.p Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
5 fuco23a.u φ U = K L F G
6 fuco23a.v φ V = R S M N
7 fuco23a.o φ ˙ = K F X R F X comp E R M X
8 eqid comp E = comp E
9 1 2 3 8 fuco23alem φ B M X K F X K M X comp E R M X F X L M X A X = F X S M X A X K F X R F X comp E R M X B F X
10 eqidd φ K F X K M X comp E R M X = K F X K M X comp E R M X
11 4 5 6 1 2 3 10 fuco23 φ B U P V A X = B M X K F X K M X comp E R M X F X L M X A X
12 7 oveqd φ F X S M X A X ˙ B F X = F X S M X A X K F X R F X comp E R M X B F X
13 9 11 12 3eqtr4d φ B U P V A X = F X S M X A X ˙ B F X