Step |
Hyp |
Ref |
Expression |
1 |
|
fuco11.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
2 |
|
fuco11.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
3 |
|
fuco11.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
4 |
|
fuco11.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
5 |
|
fuco111x.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
6 |
|
fuco112x.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
7 |
|
fuco112xa.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
8 |
1 2 3 4 5 6
|
fuco112x |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 𝑂 ‘ 𝑈 ) ) 𝑌 ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 𝑂 ‘ 𝑈 ) ) 𝑌 ) ‘ 𝐴 ) = ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐴 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
13 |
10 11 12 2 5 6
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
14 |
13 7
|
fvco3d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐴 ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) ) |
15 |
9 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 𝑂 ‘ 𝑈 ) ) 𝑌 ) ‘ 𝐴 ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) ) |