Metamath Proof Explorer


Theorem fuco112xa

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
fuco111x.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
fuco112x.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
fuco112xa.a ( 𝜑𝐴 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
Assertion fuco112xa ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) ‘ 𝐴 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fuco11.o ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 fuco11.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
3 fuco11.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
4 fuco11.u ( 𝜑𝑈 = ⟨ ⟨ 𝐾 , 𝐿 ⟩ , ⟨ 𝐹 , 𝐺 ⟩ ⟩ )
5 fuco111x.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
6 fuco112x.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
7 fuco112xa.a ( 𝜑𝐴 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
8 1 2 3 4 5 6 fuco112x ( 𝜑 → ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) )
9 8 fveq1d ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) ‘ 𝐴 ) = ( ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐴 ) )
10 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
11 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
12 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
13 10 11 12 2 5 6 funcf2 ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( 𝐹𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹𝑌 ) ) )
14 13 7 fvco3d ( 𝜑 → ( ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ∘ ( 𝑋 𝐺 𝑌 ) ) ‘ 𝐴 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) )
15 9 14 eqtrd ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 𝑂𝑈 ) ) 𝑌 ) ‘ 𝐴 ) = ( ( ( 𝐹𝑋 ) 𝐿 ( 𝐹𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) )