Metamath Proof Explorer


Theorem fucolid

Description: Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑃 )
fucolid.i 𝐼 = ( Id ‘ 𝑄 )
fucolid.q 𝑄 = ( 𝐷 FuncCat 𝐸 )
fucolid.a ( 𝜑𝐴 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐻 ) )
fucolid.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
Assertion fucolid ( 𝜑 → ( ( 𝐼𝐹 ) ( ⟨ 𝐹 , 𝐺𝑃𝐹 , 𝐻 ⟩ ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 fucolid.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑃 )
2 fucolid.i 𝐼 = ( Id ‘ 𝑄 )
3 fucolid.q 𝑄 = ( 𝐷 FuncCat 𝐸 )
4 fucolid.a ( 𝜑𝐴 ∈ ( 𝐺 ( 𝐶 Nat 𝐷 ) 𝐻 ) )
5 fucolid.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
6 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
7 3 2 6 5 fucid ( 𝜑 → ( 𝐼𝐹 ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) )
8 7 oveq1d ( 𝜑 → ( ( 𝐼𝐹 ) ( ⟨ 𝐹 , 𝐺𝑃𝐹 , 𝐻 ⟩ ) 𝐴 ) = ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ( ⟨ 𝐹 , 𝐺𝑃𝐹 , 𝐻 ⟩ ) 𝐴 ) )
9 eqid ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 )
10 9 4 nat1st2nd ( 𝜑𝐴 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
11 9 10 natrcl2 ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
12 11 funcrcl2 ( 𝜑𝐶 ∈ Cat )
13 11 funcrcl3 ( 𝜑𝐷 ∈ Cat )
14 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
15 3 14 6 5 fucidcl ( 𝜑 → ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ∈ ( 𝐹 ( 𝐷 Nat 𝐸 ) 𝐹 ) )
16 14 15 nat1st2nd ( 𝜑 → ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
17 14 16 natrcl2 ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
18 17 funcrcl3 ( 𝜑𝐸 ∈ Cat )
19 eqidd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) )
20 12 13 18 19 fucoelvv ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) )
21 1st2nd2 ( ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ∈ ( V × V ) → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
22 20 21 syl ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ )
23 1 opeq2d ( 𝜑 → ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) ⟩ = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , 𝑃 ⟩ )
24 22 23 eqtrd ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) = ⟨ ( 1st ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) , 𝑃 ⟩ )
25 eqidd ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ = ⟨ 𝐹 , 𝐺 ⟩ )
26 eqidd ( 𝜑 → ⟨ 𝐹 , 𝐻 ⟩ = ⟨ 𝐹 , 𝐻 ⟩ )
27 24 25 26 4 15 fuco22a ( 𝜑 → ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ( ⟨ 𝐹 , 𝐺𝑃𝐹 , 𝐻 ⟩ ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) )
28 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
29 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
30 17 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
31 28 29 30 funcf1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st𝐹 ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )
32 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
33 9 10 natrcl3 ( 𝜑 → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
34 32 28 33 funcf1 ( 𝜑 → ( 1st𝐻 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
35 34 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐻 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
36 31 35 fvco3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) )
37 36 oveq1d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) = ( ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) )
38 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
39 18 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat )
40 32 28 11 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
41 40 ffvelcdmda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
42 31 41 ffvelcdmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) )
43 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
44 31 35 ffvelcdmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝐸 ) )
45 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
46 28 45 38 30 41 35 funcf2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) : ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) )
47 10 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐴 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 Nat 𝐷 ) ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
48 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
49 9 47 32 45 48 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴𝑥 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
50 46 49 ffvelcdmd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) )
51 29 38 6 39 42 43 44 50 catlid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ‘ ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) = ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) )
52 37 51 eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) = ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) )
53 52 mpteq2dva ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ ( 1st𝐹 ) ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ ( ( 1st𝐺 ) ‘ 𝑥 ) ) , ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) )
54 8 27 53 3eqtrd ( 𝜑 → ( ( 𝐼𝐹 ) ( ⟨ 𝐹 , 𝐺𝑃𝐹 , 𝐻 ⟩ ) 𝐴 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ‘ ( 𝐴𝑥 ) ) ) )