Description: The functor composition bifunctor is a functor.
However, it is unlikely the unique functor compatible with the functor composition. As a counterexample, let C and D be categories of one object and one morphism, for example, ( SetCat1o ) , and E be a category with two objects equipped with only two non-identity morphisms f and g , pointing in the same direction. It is possible to map the ordered pair of natural transformations <. a , i >. , where a sends to f and i is the identity natural transformation, to the other natural transformation b sending to g , i.e., define the morphism part P such that ( a ( U P V ) i ) = b such that ( bX ) = g given hypotheses of fuco23 . Such construction should be provable as a functor.
Given any P , it is a morphism part of a functor compatible with the object part, i.e., the functor composition, i.e., the restriction of o.func , iff both of the following hold.
1. It has the same form as df-fuco up to fuco23 , but ( ( B ( U P V ) A )X ) might be mapped to a different morphism in category E . See fucofulem2 for some insights.
2. fuco22nat , fucoid , and fucoco are satisfied.
(Contributed by Zhi Wang, 3-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fucoco2.t | |- T = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
|
fucoco2.q | |- Q = ( C FuncCat E ) |
||
fucoco2.o | |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
||
fucofunc.c | |- ( ph -> C e. Cat ) |
||
fucofunc.d | |- ( ph -> D e. Cat ) |
||
fucofunc.e | |- ( ph -> E e. Cat ) |
||
Assertion | fucofunc | |- ( ph -> O ( T Func Q ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucoco2.t | |- T = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
|
2 | fucoco2.q | |- Q = ( C FuncCat E ) |
|
3 | fucoco2.o | |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
|
4 | fucofunc.c | |- ( ph -> C e. Cat ) |
|
5 | fucofunc.d | |- ( ph -> D e. Cat ) |
|
6 | fucofunc.e | |- ( ph -> E e. Cat ) |
|
7 | 1 | xpcfucbas | |- ( ( D Func E ) X. ( C Func D ) ) = ( Base ` T ) |
8 | 2 | fucbas | |- ( C Func E ) = ( Base ` Q ) |
9 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
10 | eqid | |- ( C Nat E ) = ( C Nat E ) |
|
11 | 2 10 | fuchom | |- ( C Nat E ) = ( Hom ` Q ) |
12 | eqid | |- ( Id ` T ) = ( Id ` T ) |
|
13 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
14 | eqid | |- ( comp ` T ) = ( comp ` T ) |
|
15 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
16 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
17 | 16 5 6 | fuccat | |- ( ph -> ( D FuncCat E ) e. Cat ) |
18 | eqid | |- ( C FuncCat D ) = ( C FuncCat D ) |
|
19 | 18 4 5 | fuccat | |- ( ph -> ( C FuncCat D ) e. Cat ) |
20 | 1 17 19 | xpccat | |- ( ph -> T e. Cat ) |
21 | 2 4 6 | fuccat | |- ( ph -> Q e. Cat ) |
22 | eqidd | |- ( ph -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
|
23 | 4 5 6 3 22 | fucof1 | |- ( ph -> O : ( ( D Func E ) X. ( C Func D ) ) --> ( C Func E ) ) |
24 | 4 5 6 3 22 | fucofn2 | |- ( ph -> P Fn ( ( ( D Func E ) X. ( C Func D ) ) X. ( ( D Func E ) X. ( C Func D ) ) ) ) |
25 | 3 | adantr | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) |
26 | eqidd | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) ) ) -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
|
27 | simprl | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) ) ) -> x e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
28 | simprr | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) ) ) -> y e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
29 | 25 1 9 26 27 28 | fucof21 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) ) ) -> ( x P y ) : ( x ( Hom ` T ) y ) --> ( ( O ` x ) ( C Nat E ) ( O ` y ) ) ) |
30 | 3 | adantr | |- ( ( ph /\ x e. ( ( D Func E ) X. ( C Func D ) ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) |
31 | eqidd | |- ( ( ph /\ x e. ( ( D Func E ) X. ( C Func D ) ) ) -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
|
32 | simpr | |- ( ( ph /\ x e. ( ( D Func E ) X. ( C Func D ) ) ) -> x e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
33 | 30 1 12 2 13 31 32 | fucoid2 | |- ( ( ph /\ x e. ( ( D Func E ) X. ( C Func D ) ) ) -> ( ( x P x ) ` ( ( Id ` T ) ` x ) ) = ( ( Id ` Q ) ` ( O ` x ) ) ) |
34 | 3 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> ( <. C , D >. o.F E ) = <. O , P >. ) |
35 | eqidd | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> ( ( D Func E ) X. ( C Func D ) ) = ( ( D Func E ) X. ( C Func D ) ) ) |
|
36 | simp21 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> x e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
37 | simp22 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> y e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
38 | simp23 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> z e. ( ( D Func E ) X. ( C Func D ) ) ) |
|
39 | simp3l | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> m e. ( x ( Hom ` T ) y ) ) |
|
40 | simp3r | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> n e. ( y ( Hom ` T ) z ) ) |
|
41 | 1 2 34 14 15 35 36 37 38 9 39 40 | fucoco2 | |- ( ( ph /\ ( x e. ( ( D Func E ) X. ( C Func D ) ) /\ y e. ( ( D Func E ) X. ( C Func D ) ) /\ z e. ( ( D Func E ) X. ( C Func D ) ) ) /\ ( m e. ( x ( Hom ` T ) y ) /\ n e. ( y ( Hom ` T ) z ) ) ) -> ( ( x P z ) ` ( n ( <. x , y >. ( comp ` T ) z ) m ) ) = ( ( ( y P z ) ` n ) ( <. ( O ` x ) , ( O ` y ) >. ( comp ` Q ) ( O ` z ) ) ( ( x P y ) ` m ) ) ) |
42 | 7 8 9 11 12 13 14 15 20 21 23 24 29 33 41 | isfuncd | |- ( ph -> O ( T Func Q ) P ) |