Metamath Proof Explorer


Theorem xpcfucbas

Description: The base set of the product of two categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypothesis xpcfucbas.t
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
Assertion xpcfucbas
|- ( ( B Func C ) X. ( D Func E ) ) = ( Base ` T )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t
 |-  T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
2 eqid
 |-  ( B FuncCat C ) = ( B FuncCat C )
3 2 fucbas
 |-  ( B Func C ) = ( Base ` ( B FuncCat C ) )
4 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
5 4 fucbas
 |-  ( D Func E ) = ( Base ` ( D FuncCat E ) )
6 1 3 5 xpcbas
 |-  ( ( B Func C ) X. ( D Func E ) ) = ( Base ` T )