Metamath Proof Explorer


Theorem xpcfuchomfval

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
xpcfuchomfval.b
|- A = ( Base ` T )
xpcfuchomfval.k
|- K = ( Hom ` T )
Assertion xpcfuchomfval
|- K = ( u e. A , v e. A |-> ( ( ( 1st ` u ) ( B Nat C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( D Nat E ) ( 2nd ` v ) ) ) )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t
 |-  T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
2 xpcfuchomfval.b
 |-  A = ( Base ` T )
3 xpcfuchomfval.k
 |-  K = ( Hom ` T )
4 eqid
 |-  ( B FuncCat C ) = ( B FuncCat C )
5 eqid
 |-  ( B Nat C ) = ( B Nat C )
6 4 5 fuchom
 |-  ( B Nat C ) = ( Hom ` ( B FuncCat C ) )
7 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
8 eqid
 |-  ( D Nat E ) = ( D Nat E )
9 7 8 fuchom
 |-  ( D Nat E ) = ( Hom ` ( D FuncCat E ) )
10 1 2 6 9 3 xpchomfval
 |-  K = ( u e. A , v e. A |-> ( ( ( 1st ` u ) ( B Nat C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( D Nat E ) ( 2nd ` v ) ) ) )