Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfucbas.t |
⊢ 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) ) |
2 |
|
xpcfuchomfval.b |
⊢ 𝐴 = ( Base ‘ 𝑇 ) |
3 |
|
xpcfuchomfval.k |
⊢ 𝐾 = ( Hom ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 ) |
5 |
|
eqid |
⊢ ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 ) |
6 |
4 5
|
fuchom |
⊢ ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) ) |
7 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
8 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
9 |
7 8
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
10 |
1 2 6 9 3
|
xpchomfval |
⊢ 𝐾 = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ 𝐴 ↦ ( ( ( 1st ‘ 𝑢 ) ( 𝐵 Nat 𝐶 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( 𝐷 Nat 𝐸 ) ( 2nd ‘ 𝑣 ) ) ) ) |