Metamath Proof Explorer


Theorem xpcfuchomfval

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
xpcfuchomfval.b 𝐴 = ( Base ‘ 𝑇 )
xpcfuchomfval.k 𝐾 = ( Hom ‘ 𝑇 )
Assertion xpcfuchomfval 𝐾 = ( 𝑢𝐴 , 𝑣𝐴 ↦ ( ( ( 1st𝑢 ) ( 𝐵 Nat 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( 𝐷 Nat 𝐸 ) ( 2nd𝑣 ) ) ) )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 xpcfuchomfval.b 𝐴 = ( Base ‘ 𝑇 )
3 xpcfuchomfval.k 𝐾 = ( Hom ‘ 𝑇 )
4 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
5 eqid ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 )
6 4 5 fuchom ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) )
7 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
8 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
9 7 8 fuchom ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) )
10 1 2 6 9 3 xpchomfval 𝐾 = ( 𝑢𝐴 , 𝑣𝐴 ↦ ( ( ( 1st𝑢 ) ( 𝐵 Nat 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( 𝐷 Nat 𝐸 ) ( 2nd𝑣 ) ) ) )