Metamath Proof Explorer


Theorem xpcfuchomfval

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t T = B FuncCat C × c D FuncCat E
xpcfuchomfval.b A = Base T
xpcfuchomfval.k K = Hom T
Assertion xpcfuchomfval K = u A , v A 1 st u B Nat C 1 st v × 2 nd u D Nat E 2 nd v

Proof

Step Hyp Ref Expression
1 xpcfucbas.t T = B FuncCat C × c D FuncCat E
2 xpcfuchomfval.b A = Base T
3 xpcfuchomfval.k K = Hom T
4 eqid B FuncCat C = B FuncCat C
5 eqid B Nat C = B Nat C
6 4 5 fuchom B Nat C = Hom B FuncCat C
7 eqid D FuncCat E = D FuncCat E
8 eqid D Nat E = D Nat E
9 7 8 fuchom D Nat E = Hom D FuncCat E
10 1 2 6 9 3 xpchomfval K = u A , v A 1 st u B Nat C 1 st v × 2 nd u D Nat E 2 nd v