| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcfucbas.t |
⊢ 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) ) |
| 2 |
|
xpcfuchomfval.b |
⊢ 𝐴 = ( Base ‘ 𝑇 ) |
| 3 |
|
xpcfuchomfval.k |
⊢ 𝐾 = ( Hom ‘ 𝑇 ) |
| 4 |
|
xpcfuchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 5 |
|
xpcfuchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 6 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 ) |
| 7 |
|
eqid |
⊢ ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 ) |
| 8 |
6 7
|
fuchom |
⊢ ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 10 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 11 |
9 10
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 12 |
1 2 8 11 3 4 5
|
xpchom |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( 1st ‘ 𝑋 ) ( 𝐵 Nat 𝐶 ) ( 1st ‘ 𝑌 ) ) × ( ( 2nd ‘ 𝑋 ) ( 𝐷 Nat 𝐸 ) ( 2nd ‘ 𝑌 ) ) ) ) |