Metamath Proof Explorer


Theorem xpcfuchom

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
xpcfuchomfval.b 𝐴 = ( Base ‘ 𝑇 )
xpcfuchomfval.k 𝐾 = ( Hom ‘ 𝑇 )
xpcfuchom.x ( 𝜑𝑋𝐴 )
xpcfuchom.y ( 𝜑𝑌𝐴 )
Assertion xpcfuchom ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( 1st𝑋 ) ( 𝐵 Nat 𝐶 ) ( 1st𝑌 ) ) × ( ( 2nd𝑋 ) ( 𝐷 Nat 𝐸 ) ( 2nd𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 xpcfuchomfval.b 𝐴 = ( Base ‘ 𝑇 )
3 xpcfuchomfval.k 𝐾 = ( Hom ‘ 𝑇 )
4 xpcfuchom.x ( 𝜑𝑋𝐴 )
5 xpcfuchom.y ( 𝜑𝑌𝐴 )
6 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
7 eqid ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 )
8 6 7 fuchom ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) )
9 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
10 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
11 9 10 fuchom ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) )
12 1 2 8 11 3 4 5 xpchom ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( 1st𝑋 ) ( 𝐵 Nat 𝐶 ) ( 1st𝑌 ) ) × ( ( 2nd𝑋 ) ( 𝐷 Nat 𝐸 ) ( 2nd𝑌 ) ) ) )