| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcfuchom2.t |
⊢ 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) ) |
| 2 |
|
xpcfuchom2.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐵 Func 𝐶 ) ) |
| 3 |
|
xpcfuchom2.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐷 Func 𝐸 ) ) |
| 4 |
|
xpcfuchom2.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 Func 𝐶 ) ) |
| 5 |
|
xpcfuchom2.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐷 Func 𝐸 ) ) |
| 6 |
|
xpcfuchom2.k |
⊢ 𝐾 = ( Hom ‘ 𝑇 ) |
| 7 |
|
eqid |
⊢ ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 ) |
| 8 |
7
|
fucbas |
⊢ ( 𝐵 Func 𝐶 ) = ( Base ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 10 |
9
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 11 |
|
eqid |
⊢ ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 ) |
| 12 |
7 11
|
fuchom |
⊢ ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) ) |
| 13 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 14 |
9 13
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 15 |
1 8 10 12 14 2 3 4 5 6
|
xpchom2 |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 𝐾 〈 𝑃 , 𝑄 〉 ) = ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) ) ) |