Metamath Proof Explorer


Theorem xpcfuchom2

Description: Value of the set of morphisms in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
xpcfuchom2.m ( 𝜑𝑀 ∈ ( 𝐵 Func 𝐶 ) )
xpcfuchom2.n ( 𝜑𝑁 ∈ ( 𝐷 Func 𝐸 ) )
xpcfuchom2.p ( 𝜑𝑃 ∈ ( 𝐵 Func 𝐶 ) )
xpcfuchom2.q ( 𝜑𝑄 ∈ ( 𝐷 Func 𝐸 ) )
xpcfuchom2.k 𝐾 = ( Hom ‘ 𝑇 )
Assertion xpcfuchom2 ( 𝜑 → ( ⟨ 𝑀 , 𝑁𝐾𝑃 , 𝑄 ⟩ ) = ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 xpcfuchom2.m ( 𝜑𝑀 ∈ ( 𝐵 Func 𝐶 ) )
3 xpcfuchom2.n ( 𝜑𝑁 ∈ ( 𝐷 Func 𝐸 ) )
4 xpcfuchom2.p ( 𝜑𝑃 ∈ ( 𝐵 Func 𝐶 ) )
5 xpcfuchom2.q ( 𝜑𝑄 ∈ ( 𝐷 Func 𝐸 ) )
6 xpcfuchom2.k 𝐾 = ( Hom ‘ 𝑇 )
7 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
8 7 fucbas ( 𝐵 Func 𝐶 ) = ( Base ‘ ( 𝐵 FuncCat 𝐶 ) )
9 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
10 9 fucbas ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) )
11 eqid ( 𝐵 Nat 𝐶 ) = ( 𝐵 Nat 𝐶 )
12 7 11 fuchom ( 𝐵 Nat 𝐶 ) = ( Hom ‘ ( 𝐵 FuncCat 𝐶 ) )
13 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
14 9 13 fuchom ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) )
15 1 8 10 12 14 2 3 4 5 6 xpchom2 ( 𝜑 → ( ⟨ 𝑀 , 𝑁𝐾𝑃 , 𝑄 ⟩ ) = ( ( 𝑀 ( 𝐵 Nat 𝐶 ) 𝑃 ) × ( 𝑁 ( 𝐷 Nat 𝐸 ) 𝑄 ) ) )