Metamath Proof Explorer


Theorem xpcfuchom2

Description: Value of the set of morphisms in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t T = B FuncCat C × c D FuncCat E
xpcfuchom2.m φ M B Func C
xpcfuchom2.n φ N D Func E
xpcfuchom2.p φ P B Func C
xpcfuchom2.q φ Q D Func E
xpcfuchom2.k K = Hom T
Assertion xpcfuchom2 φ M N K P Q = M B Nat C P × N D Nat E Q

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t T = B FuncCat C × c D FuncCat E
2 xpcfuchom2.m φ M B Func C
3 xpcfuchom2.n φ N D Func E
4 xpcfuchom2.p φ P B Func C
5 xpcfuchom2.q φ Q D Func E
6 xpcfuchom2.k K = Hom T
7 eqid B FuncCat C = B FuncCat C
8 7 fucbas B Func C = Base B FuncCat C
9 eqid D FuncCat E = D FuncCat E
10 9 fucbas D Func E = Base D FuncCat E
11 eqid B Nat C = B Nat C
12 7 11 fuchom B Nat C = Hom B FuncCat C
13 eqid D Nat E = D Nat E
14 9 13 fuchom D Nat E = Hom D FuncCat E
15 1 8 10 12 14 2 3 4 5 6 xpchom2 φ M N K P Q = M B Nat C P × N D Nat E Q