Step |
Hyp |
Ref |
Expression |
1 |
|
xpcfuchom2.t |
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
2 |
|
xpcfuchom2.m |
|- ( ph -> M e. ( B Func C ) ) |
3 |
|
xpcfuchom2.n |
|- ( ph -> N e. ( D Func E ) ) |
4 |
|
xpcfuchom2.p |
|- ( ph -> P e. ( B Func C ) ) |
5 |
|
xpcfuchom2.q |
|- ( ph -> Q e. ( D Func E ) ) |
6 |
|
xpcfuchom2.k |
|- K = ( Hom ` T ) |
7 |
|
eqid |
|- ( B FuncCat C ) = ( B FuncCat C ) |
8 |
7
|
fucbas |
|- ( B Func C ) = ( Base ` ( B FuncCat C ) ) |
9 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
10 |
9
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
11 |
|
eqid |
|- ( B Nat C ) = ( B Nat C ) |
12 |
7 11
|
fuchom |
|- ( B Nat C ) = ( Hom ` ( B FuncCat C ) ) |
13 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
14 |
9 13
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
15 |
1 8 10 12 14 2 3 4 5 6
|
xpchom2 |
|- ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( M ( B Nat C ) P ) X. ( N ( D Nat E ) Q ) ) ) |