Metamath Proof Explorer


Theorem xpcfuchom2

Description: Value of the set of morphisms in the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfuchom2.t
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
xpcfuchom2.m
|- ( ph -> M e. ( B Func C ) )
xpcfuchom2.n
|- ( ph -> N e. ( D Func E ) )
xpcfuchom2.p
|- ( ph -> P e. ( B Func C ) )
xpcfuchom2.q
|- ( ph -> Q e. ( D Func E ) )
xpcfuchom2.k
|- K = ( Hom ` T )
Assertion xpcfuchom2
|- ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( M ( B Nat C ) P ) X. ( N ( D Nat E ) Q ) ) )

Proof

Step Hyp Ref Expression
1 xpcfuchom2.t
 |-  T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
2 xpcfuchom2.m
 |-  ( ph -> M e. ( B Func C ) )
3 xpcfuchom2.n
 |-  ( ph -> N e. ( D Func E ) )
4 xpcfuchom2.p
 |-  ( ph -> P e. ( B Func C ) )
5 xpcfuchom2.q
 |-  ( ph -> Q e. ( D Func E ) )
6 xpcfuchom2.k
 |-  K = ( Hom ` T )
7 eqid
 |-  ( B FuncCat C ) = ( B FuncCat C )
8 7 fucbas
 |-  ( B Func C ) = ( Base ` ( B FuncCat C ) )
9 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
10 9 fucbas
 |-  ( D Func E ) = ( Base ` ( D FuncCat E ) )
11 eqid
 |-  ( B Nat C ) = ( B Nat C )
12 7 11 fuchom
 |-  ( B Nat C ) = ( Hom ` ( B FuncCat C ) )
13 eqid
 |-  ( D Nat E ) = ( D Nat E )
14 9 13 fuchom
 |-  ( D Nat E ) = ( Hom ` ( D FuncCat E ) )
15 1 8 10 12 14 2 3 4 5 6 xpchom2
 |-  ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( M ( B Nat C ) P ) X. ( N ( D Nat E ) Q ) ) )