Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpcfucbas.t | |- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
|
xpcfuchomfval.b | |- A = ( Base ` T ) |
||
xpcfuchomfval.k | |- K = ( Hom ` T ) |
||
xpcfuchom.x | |- ( ph -> X e. A ) |
||
xpcfuchom.y | |- ( ph -> Y e. A ) |
||
Assertion | xpcfuchom | |- ( ph -> ( X K Y ) = ( ( ( 1st ` X ) ( B Nat C ) ( 1st ` Y ) ) X. ( ( 2nd ` X ) ( D Nat E ) ( 2nd ` Y ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcfucbas.t | |- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
|
2 | xpcfuchomfval.b | |- A = ( Base ` T ) |
|
3 | xpcfuchomfval.k | |- K = ( Hom ` T ) |
|
4 | xpcfuchom.x | |- ( ph -> X e. A ) |
|
5 | xpcfuchom.y | |- ( ph -> Y e. A ) |
|
6 | eqid | |- ( B FuncCat C ) = ( B FuncCat C ) |
|
7 | eqid | |- ( B Nat C ) = ( B Nat C ) |
|
8 | 6 7 | fuchom | |- ( B Nat C ) = ( Hom ` ( B FuncCat C ) ) |
9 | eqid | |- ( D FuncCat E ) = ( D FuncCat E ) |
|
10 | eqid | |- ( D Nat E ) = ( D Nat E ) |
|
11 | 9 10 | fuchom | |- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
12 | 1 2 8 11 3 4 5 | xpchom | |- ( ph -> ( X K Y ) = ( ( ( 1st ` X ) ( B Nat C ) ( 1st ` Y ) ) X. ( ( 2nd ` X ) ( D Nat E ) ( 2nd ` Y ) ) ) ) |