Metamath Proof Explorer


Theorem xpcfuchom

Description: Set of morphisms of the binary product of categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses xpcfucbas.t
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
xpcfuchomfval.b
|- A = ( Base ` T )
xpcfuchomfval.k
|- K = ( Hom ` T )
xpcfuchom.x
|- ( ph -> X e. A )
xpcfuchom.y
|- ( ph -> Y e. A )
Assertion xpcfuchom
|- ( ph -> ( X K Y ) = ( ( ( 1st ` X ) ( B Nat C ) ( 1st ` Y ) ) X. ( ( 2nd ` X ) ( D Nat E ) ( 2nd ` Y ) ) ) )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t
 |-  T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) )
2 xpcfuchomfval.b
 |-  A = ( Base ` T )
3 xpcfuchomfval.k
 |-  K = ( Hom ` T )
4 xpcfuchom.x
 |-  ( ph -> X e. A )
5 xpcfuchom.y
 |-  ( ph -> Y e. A )
6 eqid
 |-  ( B FuncCat C ) = ( B FuncCat C )
7 eqid
 |-  ( B Nat C ) = ( B Nat C )
8 6 7 fuchom
 |-  ( B Nat C ) = ( Hom ` ( B FuncCat C ) )
9 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
10 eqid
 |-  ( D Nat E ) = ( D Nat E )
11 9 10 fuchom
 |-  ( D Nat E ) = ( Hom ` ( D FuncCat E ) )
12 1 2 8 11 3 4 5 xpchom
 |-  ( ph -> ( X K Y ) = ( ( ( 1st ` X ) ( B Nat C ) ( 1st ` Y ) ) X. ( ( 2nd ` X ) ( D Nat E ) ( 2nd ` Y ) ) ) )