| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpcfucbas.t |
|- T = ( ( B FuncCat C ) Xc. ( D FuncCat E ) ) |
| 2 |
|
xpcfuchomfval.b |
|- A = ( Base ` T ) |
| 3 |
|
xpcfuchomfval.k |
|- K = ( Hom ` T ) |
| 4 |
|
xpcfuchom.x |
|- ( ph -> X e. A ) |
| 5 |
|
xpcfuchom.y |
|- ( ph -> Y e. A ) |
| 6 |
|
eqid |
|- ( B FuncCat C ) = ( B FuncCat C ) |
| 7 |
|
eqid |
|- ( B Nat C ) = ( B Nat C ) |
| 8 |
6 7
|
fuchom |
|- ( B Nat C ) = ( Hom ` ( B FuncCat C ) ) |
| 9 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 10 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 11 |
9 10
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
| 12 |
1 2 8 11 3 4 5
|
xpchom |
|- ( ph -> ( X K Y ) = ( ( ( 1st ` X ) ( B Nat C ) ( 1st ` Y ) ) X. ( ( 2nd ` X ) ( D Nat E ) ( 2nd ` Y ) ) ) ) |