Metamath Proof Explorer


Theorem xpcfucbas

Description: The base set of the product of two categories of functors. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypothesis xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
Assertion xpcfucbas ( ( 𝐵 Func 𝐶 ) × ( 𝐷 Func 𝐸 ) ) = ( Base ‘ 𝑇 )

Proof

Step Hyp Ref Expression
1 xpcfucbas.t 𝑇 = ( ( 𝐵 FuncCat 𝐶 ) ×c ( 𝐷 FuncCat 𝐸 ) )
2 eqid ( 𝐵 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐶 )
3 2 fucbas ( 𝐵 Func 𝐶 ) = ( Base ‘ ( 𝐵 FuncCat 𝐶 ) )
4 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
5 4 fucbas ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) )
6 1 3 5 xpcbas ( ( 𝐵 Func 𝐶 ) × ( 𝐷 Func 𝐸 ) ) = ( Base ‘ 𝑇 )