Step |
Hyp |
Ref |
Expression |
1 |
|
fucoid.o |
|- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) |
2 |
|
fucoid.t |
|- T = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
3 |
|
fucoid.1 |
|- .1. = ( Id ` T ) |
4 |
|
fucoid.q |
|- Q = ( C FuncCat E ) |
5 |
|
fucoid.i |
|- I = ( Id ` Q ) |
6 |
|
fucoid.f |
|- ( ph -> F ( C Func D ) G ) |
7 |
|
fucoid.k |
|- ( ph -> K ( D Func E ) L ) |
8 |
|
fucoid.u |
|- ( ph -> U = <. <. K , L >. , <. F , G >. >. ) |
9 |
|
ovex |
|- ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) e. _V |
10 |
|
eqid |
|- ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) = ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) |
11 |
9 10
|
fnmpti |
|- ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) Fn ( Base ` C ) |
12 |
11
|
a1i |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) Fn ( Base ` C ) ) |
13 |
7
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
14 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
15 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
16 |
14 15
|
cidfn |
|- ( E e. Cat -> ( Id ` E ) Fn ( Base ` E ) ) |
17 |
13 16
|
syl |
|- ( ph -> ( Id ` E ) Fn ( Base ` E ) ) |
18 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
19 |
18 14 7
|
funcf1 |
|- ( ph -> K : ( Base ` D ) --> ( Base ` E ) ) |
20 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
21 |
20 18 6
|
funcf1 |
|- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
22 |
19 21
|
fcod |
|- ( ph -> ( K o. F ) : ( Base ` C ) --> ( Base ` E ) ) |
23 |
|
fnfco |
|- ( ( ( Id ` E ) Fn ( Base ` E ) /\ ( K o. F ) : ( Base ` C ) --> ( Base ` E ) ) -> ( ( Id ` E ) o. ( K o. F ) ) Fn ( Base ` C ) ) |
24 |
17 22 23
|
syl2anc |
|- ( ph -> ( ( Id ` E ) o. ( K o. F ) ) Fn ( Base ` C ) ) |
25 |
|
2fveq3 |
|- ( x = w -> ( K ` ( F ` x ) ) = ( K ` ( F ` w ) ) ) |
26 |
25 25
|
opeq12d |
|- ( x = w -> <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. = <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ) |
27 |
26 25
|
oveq12d |
|- ( x = w -> ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) = ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ) |
28 |
|
2fveq3 |
|- ( x = w -> ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) = ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ) |
29 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
30 |
29 29
|
oveq12d |
|- ( x = w -> ( ( F ` x ) L ( F ` x ) ) = ( ( F ` w ) L ( F ` w ) ) ) |
31 |
|
fveq2 |
|- ( x = w -> ( ( ( Id ` D ) o. F ) ` x ) = ( ( ( Id ` D ) o. F ) ` w ) ) |
32 |
30 31
|
fveq12d |
|- ( x = w -> ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) = ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) |
33 |
27 28 32
|
oveq123d |
|- ( x = w -> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) = ( ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) ) |
34 |
|
simpr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> w e. ( Base ` C ) ) |
35 |
|
ovexd |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) e. _V ) |
36 |
10 33 34 35
|
fvmptd3 |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) ` w ) = ( ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) ) |
37 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
38 |
13
|
adantr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> E e. Cat ) |
39 |
19
|
adantr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> K : ( Base ` D ) --> ( Base ` E ) ) |
40 |
21
|
ffvelcdmda |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( F ` w ) e. ( Base ` D ) ) |
41 |
39 40
|
ffvelcdmd |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( K ` ( F ` w ) ) e. ( Base ` E ) ) |
42 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
43 |
14 37 15 38 41
|
catidcl |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) e. ( ( K ` ( F ` w ) ) ( Hom ` E ) ( K ` ( F ` w ) ) ) ) |
44 |
14 37 15 38 41 42 41 43
|
catlid |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
45 |
39 40
|
fvco3d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
46 |
21
|
adantr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> F : ( Base ` C ) --> ( Base ` D ) ) |
47 |
46 34
|
fvco3d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( Id ` D ) o. F ) ` w ) = ( ( Id ` D ) ` ( F ` w ) ) ) |
48 |
47
|
fveq2d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) = ( ( ( F ` w ) L ( F ` w ) ) ` ( ( Id ` D ) ` ( F ` w ) ) ) ) |
49 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
50 |
7
|
adantr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> K ( D Func E ) L ) |
51 |
18 49 15 50 40
|
funcid |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( F ` w ) L ( F ` w ) ) ` ( ( Id ` D ) ` ( F ` w ) ) ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
52 |
48 51
|
eqtrd |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
53 |
45 52
|
oveq12d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) = ( ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) ) |
54 |
22
|
adantr |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( K o. F ) : ( Base ` C ) --> ( Base ` E ) ) |
55 |
54 34
|
fvco3d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( Id ` E ) o. ( K o. F ) ) ` w ) = ( ( Id ` E ) ` ( ( K o. F ) ` w ) ) ) |
56 |
46 34
|
fvco3d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( K o. F ) ` w ) = ( K ` ( F ` w ) ) ) |
57 |
56
|
fveq2d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( Id ` E ) ` ( ( K o. F ) ` w ) ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
58 |
55 57
|
eqtrd |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( Id ` E ) o. ( K o. F ) ) ` w ) = ( ( Id ` E ) ` ( K ` ( F ` w ) ) ) ) |
59 |
44 53 58
|
3eqtr4d |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( ( ( Id ` E ) o. K ) ` ( F ` w ) ) ( <. ( K ` ( F ` w ) ) , ( K ` ( F ` w ) ) >. ( comp ` E ) ( K ` ( F ` w ) ) ) ( ( ( F ` w ) L ( F ` w ) ) ` ( ( ( Id ` D ) o. F ) ` w ) ) ) = ( ( ( Id ` E ) o. ( K o. F ) ) ` w ) ) |
60 |
36 59
|
eqtrd |
|- ( ( ph /\ w e. ( Base ` C ) ) -> ( ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) ` w ) = ( ( ( Id ` E ) o. ( K o. F ) ) ` w ) ) |
61 |
12 24 60
|
eqfnfvd |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) = ( ( Id ` E ) o. ( K o. F ) ) ) |
62 |
8
|
fveq2d |
|- ( ph -> ( .1. ` U ) = ( .1. ` <. <. K , L >. , <. F , G >. >. ) ) |
63 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
64 |
7
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
65 |
63 64 13
|
fuccat |
|- ( ph -> ( D FuncCat E ) e. Cat ) |
66 |
|
eqid |
|- ( C FuncCat D ) = ( C FuncCat D ) |
67 |
6
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
68 |
66 67 64
|
fuccat |
|- ( ph -> ( C FuncCat D ) e. Cat ) |
69 |
63
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
70 |
66
|
fucbas |
|- ( C Func D ) = ( Base ` ( C FuncCat D ) ) |
71 |
|
eqid |
|- ( Id ` ( D FuncCat E ) ) = ( Id ` ( D FuncCat E ) ) |
72 |
|
eqid |
|- ( Id ` ( C FuncCat D ) ) = ( Id ` ( C FuncCat D ) ) |
73 |
|
df-br |
|- ( K ( D Func E ) L <-> <. K , L >. e. ( D Func E ) ) |
74 |
7 73
|
sylib |
|- ( ph -> <. K , L >. e. ( D Func E ) ) |
75 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
76 |
6 75
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
77 |
2 65 68 69 70 71 72 3 74 76
|
xpcid |
|- ( ph -> ( .1. ` <. <. K , L >. , <. F , G >. >. ) = <. ( ( Id ` ( D FuncCat E ) ) ` <. K , L >. ) , ( ( Id ` ( C FuncCat D ) ) ` <. F , G >. ) >. ) |
78 |
63 71 15 74
|
fucid |
|- ( ph -> ( ( Id ` ( D FuncCat E ) ) ` <. K , L >. ) = ( ( Id ` E ) o. ( 1st ` <. K , L >. ) ) ) |
79 |
|
relfunc |
|- Rel ( D Func E ) |
80 |
79
|
brrelex1i |
|- ( K ( D Func E ) L -> K e. _V ) |
81 |
7 80
|
syl |
|- ( ph -> K e. _V ) |
82 |
79
|
brrelex2i |
|- ( K ( D Func E ) L -> L e. _V ) |
83 |
7 82
|
syl |
|- ( ph -> L e. _V ) |
84 |
|
op1stg |
|- ( ( K e. _V /\ L e. _V ) -> ( 1st ` <. K , L >. ) = K ) |
85 |
81 83 84
|
syl2anc |
|- ( ph -> ( 1st ` <. K , L >. ) = K ) |
86 |
85
|
coeq2d |
|- ( ph -> ( ( Id ` E ) o. ( 1st ` <. K , L >. ) ) = ( ( Id ` E ) o. K ) ) |
87 |
78 86
|
eqtrd |
|- ( ph -> ( ( Id ` ( D FuncCat E ) ) ` <. K , L >. ) = ( ( Id ` E ) o. K ) ) |
88 |
66 72 49 76
|
fucid |
|- ( ph -> ( ( Id ` ( C FuncCat D ) ) ` <. F , G >. ) = ( ( Id ` D ) o. ( 1st ` <. F , G >. ) ) ) |
89 |
|
relfunc |
|- Rel ( C Func D ) |
90 |
89
|
brrelex1i |
|- ( F ( C Func D ) G -> F e. _V ) |
91 |
6 90
|
syl |
|- ( ph -> F e. _V ) |
92 |
89
|
brrelex2i |
|- ( F ( C Func D ) G -> G e. _V ) |
93 |
6 92
|
syl |
|- ( ph -> G e. _V ) |
94 |
|
op1stg |
|- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
95 |
91 93 94
|
syl2anc |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
96 |
95
|
coeq2d |
|- ( ph -> ( ( Id ` D ) o. ( 1st ` <. F , G >. ) ) = ( ( Id ` D ) o. F ) ) |
97 |
88 96
|
eqtrd |
|- ( ph -> ( ( Id ` ( C FuncCat D ) ) ` <. F , G >. ) = ( ( Id ` D ) o. F ) ) |
98 |
87 97
|
opeq12d |
|- ( ph -> <. ( ( Id ` ( D FuncCat E ) ) ` <. K , L >. ) , ( ( Id ` ( C FuncCat D ) ) ` <. F , G >. ) >. = <. ( ( Id ` E ) o. K ) , ( ( Id ` D ) o. F ) >. ) |
99 |
62 77 98
|
3eqtrd |
|- ( ph -> ( .1. ` U ) = <. ( ( Id ` E ) o. K ) , ( ( Id ` D ) o. F ) >. ) |
100 |
99
|
fveq2d |
|- ( ph -> ( ( U P U ) ` ( .1. ` U ) ) = ( ( U P U ) ` <. ( ( Id ` E ) o. K ) , ( ( Id ` D ) o. F ) >. ) ) |
101 |
|
df-ov |
|- ( ( ( Id ` E ) o. K ) ( U P U ) ( ( Id ` D ) o. F ) ) = ( ( U P U ) ` <. ( ( Id ` E ) o. K ) , ( ( Id ` D ) o. F ) >. ) |
102 |
100 101
|
eqtr4di |
|- ( ph -> ( ( U P U ) ` ( .1. ` U ) ) = ( ( ( Id ` E ) o. K ) ( U P U ) ( ( Id ` D ) o. F ) ) ) |
103 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
104 |
66 103
|
fuchom |
|- ( C Nat D ) = ( Hom ` ( C FuncCat D ) ) |
105 |
70 104 72 68 76
|
catidcl |
|- ( ph -> ( ( Id ` ( C FuncCat D ) ) ` <. F , G >. ) e. ( <. F , G >. ( C Nat D ) <. F , G >. ) ) |
106 |
97 105
|
eqeltrrd |
|- ( ph -> ( ( Id ` D ) o. F ) e. ( <. F , G >. ( C Nat D ) <. F , G >. ) ) |
107 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
108 |
63 107
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
109 |
69 108 71 65 74
|
catidcl |
|- ( ph -> ( ( Id ` ( D FuncCat E ) ) ` <. K , L >. ) e. ( <. K , L >. ( D Nat E ) <. K , L >. ) ) |
110 |
87 109
|
eqeltrrd |
|- ( ph -> ( ( Id ` E ) o. K ) e. ( <. K , L >. ( D Nat E ) <. K , L >. ) ) |
111 |
1 8 8 106 110
|
fuco22 |
|- ( ph -> ( ( ( Id ` E ) o. K ) ( U P U ) ( ( Id ` D ) o. F ) ) = ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) ) |
112 |
102 111
|
eqtrd |
|- ( ph -> ( ( U P U ) ` ( .1. ` U ) ) = ( x e. ( Base ` C ) |-> ( ( ( ( Id ` E ) o. K ) ` ( F ` x ) ) ( <. ( K ` ( F ` x ) ) , ( K ` ( F ` x ) ) >. ( comp ` E ) ( K ` ( F ` x ) ) ) ( ( ( F ` x ) L ( F ` x ) ) ` ( ( ( Id ` D ) o. F ) ` x ) ) ) ) ) |
113 |
1 6 7 8 4 5 15
|
fuco11id |
|- ( ph -> ( I ` ( O ` U ) ) = ( ( Id ` E ) o. ( K o. F ) ) ) |
114 |
61 112 113
|
3eqtr4d |
|- ( ph -> ( ( U P U ) ` ( .1. ` U ) ) = ( I ` ( O ` U ) ) ) |