| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fucoid.o | 
							⊢ ( 𝜑  →  ( 〈 𝐶 ,  𝐷 〉  ∘F  𝐸 )  =  〈 𝑂 ,  𝑃 〉 )  | 
						
						
							| 2 | 
							
								
							 | 
							fucoid.t | 
							⊢ 𝑇  =  ( ( 𝐷  FuncCat  𝐸 )  ×c  ( 𝐶  FuncCat  𝐷 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fucoid.1 | 
							⊢  1   =  ( Id ‘ 𝑇 )  | 
						
						
							| 4 | 
							
								
							 | 
							fucoid.q | 
							⊢ 𝑄  =  ( 𝐶  FuncCat  𝐸 )  | 
						
						
							| 5 | 
							
								
							 | 
							fucoid.i | 
							⊢ 𝐼  =  ( Id ‘ 𝑄 )  | 
						
						
							| 6 | 
							
								
							 | 
							fucoid.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 7 | 
							
								
							 | 
							fucoid.k | 
							⊢ ( 𝜑  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 8 | 
							
								
							 | 
							fucoid.u | 
							⊢ ( 𝜑  →  𝑈  =  〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  | 
						
						
							| 9 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) )  ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							fnmpti | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) )  Fn  ( Base ‘ 𝐶 )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) )  Fn  ( Base ‘ 𝐶 ) )  | 
						
						
							| 13 | 
							
								7
							 | 
							funcrcl3 | 
							⊢ ( 𝜑  →  𝐸  ∈  Cat )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐸 )  =  ( Id ‘ 𝐸 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							cidfn | 
							⊢ ( 𝐸  ∈  Cat  →  ( Id ‘ 𝐸 )  Fn  ( Base ‘ 𝐸 ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ( Id ‘ 𝐸 )  Fn  ( Base ‘ 𝐸 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 19 | 
							
								18 14 7
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 21 | 
							
								20 18 6
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							fcod | 
							⊢ ( 𝜑  →  ( 𝐾  ∘  𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fnfco | 
							⊢ ( ( ( Id ‘ 𝐸 )  Fn  ( Base ‘ 𝐸 )  ∧  ( 𝐾  ∘  𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) )  →  ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) )  Fn  ( Base ‘ 𝐶 ) )  | 
						
						
							| 24 | 
							
								17 22 23
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) )  Fn  ( Base ‘ 𝐶 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 26 | 
							
								25 25
							 | 
							opeq12d | 
							⊢ ( 𝑥  =  𝑤  →  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉  =  〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 )  | 
						
						
							| 27 | 
							
								26 25
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑤  →  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) )  =  ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑤  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑤 ) )  | 
						
						
							| 30 | 
							
								29 29
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							fveq12d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) )  | 
						
						
							| 33 | 
							
								27 28 32
							 | 
							oveq123d | 
							⊢ ( 𝑥  =  𝑤  →  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) )  =  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  𝑤  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) )  ∈  V )  | 
						
						
							| 36 | 
							
								10 33 34 35
							 | 
							fvmptd3 | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) ) ‘ 𝑤 )  =  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝐸 )  =  ( Hom  ‘ 𝐸 )  | 
						
						
							| 38 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  𝐸  ∈  Cat )  | 
						
						
							| 39 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 40 | 
							
								21
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) )  ∈  ( Base ‘ 𝐸 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝐸 )  =  ( comp ‘ 𝐸 )  | 
						
						
							| 43 | 
							
								14 37 15 38 41
							 | 
							catidcl | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) )  ∈  ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ( Hom  ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 44 | 
							
								14 37 15 38 41 42 41 43
							 | 
							catlid | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 45 | 
							
								39 40
							 | 
							fvco3d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 46 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 47 | 
							
								46 34
							 | 
							fvco3d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 )  =  ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) )  =  ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐷 )  =  ( Id ‘ 𝐷 )  | 
						
						
							| 50 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  𝐾 ( 𝐷  Func  𝐸 ) 𝐿 )  | 
						
						
							| 51 | 
							
								18 49 15 50 40
							 | 
							funcid | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 52 | 
							
								48 51
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 53 | 
							
								45 52
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) )  =  ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) )  | 
						
						
							| 54 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝐾  ∘  𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) )  | 
						
						
							| 55 | 
							
								54 34
							 | 
							fvco3d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) ‘ 𝑤 )  =  ( ( Id ‘ 𝐸 ) ‘ ( ( 𝐾  ∘  𝐹 ) ‘ 𝑤 ) ) )  | 
						
						
							| 56 | 
							
								46 34
							 | 
							fvco3d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑤 )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( Id ‘ 𝐸 ) ‘ ( ( 𝐾  ∘  𝐹 ) ‘ 𝑤 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) ‘ 𝑤 )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) )  | 
						
						
							| 59 | 
							
								44 53 58
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑤 ) ) )  =  ( ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) ‘ 𝑤 ) )  | 
						
						
							| 60 | 
							
								36 59
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ( Base ‘ 𝐶 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) ) ‘ 𝑤 )  =  ( ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) ‘ 𝑤 ) )  | 
						
						
							| 61 | 
							
								12 24 60
							 | 
							eqfnfvd | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) )  =  ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) )  | 
						
						
							| 62 | 
							
								8
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  (  1  ‘ 𝑈 )  =  (  1  ‘ 〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐷  FuncCat  𝐸 )  =  ( 𝐷  FuncCat  𝐸 )  | 
						
						
							| 64 | 
							
								7
							 | 
							funcrcl2 | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 65 | 
							
								63 64 13
							 | 
							fuccat | 
							⊢ ( 𝜑  →  ( 𝐷  FuncCat  𝐸 )  ∈  Cat )  | 
						
						
							| 66 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  FuncCat  𝐷 )  =  ( 𝐶  FuncCat  𝐷 )  | 
						
						
							| 67 | 
							
								6
							 | 
							funcrcl2 | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 68 | 
							
								66 67 64
							 | 
							fuccat | 
							⊢ ( 𝜑  →  ( 𝐶  FuncCat  𝐷 )  ∈  Cat )  | 
						
						
							| 69 | 
							
								63
							 | 
							fucbas | 
							⊢ ( 𝐷  Func  𝐸 )  =  ( Base ‘ ( 𝐷  FuncCat  𝐸 ) )  | 
						
						
							| 70 | 
							
								66
							 | 
							fucbas | 
							⊢ ( 𝐶  Func  𝐷 )  =  ( Base ‘ ( 𝐶  FuncCat  𝐷 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ ( 𝐷  FuncCat  𝐸 ) )  =  ( Id ‘ ( 𝐷  FuncCat  𝐸 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ ( 𝐶  FuncCat  𝐷 ) )  =  ( Id ‘ ( 𝐶  FuncCat  𝐷 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝐾 ( 𝐷  Func  𝐸 ) 𝐿  ↔  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐷  Func  𝐸 ) )  | 
						
						
							| 74 | 
							
								7 73
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 𝐾 ,  𝐿 〉  ∈  ( 𝐷  Func  𝐸 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 76 | 
							
								6 75
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 77 | 
							
								2 65 68 69 70 71 72 3 74 76
							 | 
							xpcid | 
							⊢ ( 𝜑  →  (  1  ‘ 〈 〈 𝐾 ,  𝐿 〉 ,  〈 𝐹 ,  𝐺 〉 〉 )  =  〈 ( ( Id ‘ ( 𝐷  FuncCat  𝐸 ) ) ‘ 〈 𝐾 ,  𝐿 〉 ) ,  ( ( Id ‘ ( 𝐶  FuncCat  𝐷 ) ) ‘ 〈 𝐹 ,  𝐺 〉 ) 〉 )  | 
						
						
							| 78 | 
							
								63 71 15 74
							 | 
							fucid | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐷  FuncCat  𝐸 ) ) ‘ 〈 𝐾 ,  𝐿 〉 )  =  ( ( Id ‘ 𝐸 )  ∘  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐷  Func  𝐸 )  | 
						
						
							| 80 | 
							
								79
							 | 
							brrelex1i | 
							⊢ ( 𝐾 ( 𝐷  Func  𝐸 ) 𝐿  →  𝐾  ∈  V )  | 
						
						
							| 81 | 
							
								7 80
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐾  ∈  V )  | 
						
						
							| 82 | 
							
								79
							 | 
							brrelex2i | 
							⊢ ( 𝐾 ( 𝐷  Func  𝐸 ) 𝐿  →  𝐿  ∈  V )  | 
						
						
							| 83 | 
							
								7 82
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐿  ∈  V )  | 
						
						
							| 84 | 
							
								
							 | 
							op1stg | 
							⊢ ( ( 𝐾  ∈  V  ∧  𝐿  ∈  V )  →  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐾 )  | 
						
						
							| 85 | 
							
								81 83 84
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 )  =  𝐾 )  | 
						
						
							| 86 | 
							
								85
							 | 
							coeq2d | 
							⊢ ( 𝜑  →  ( ( Id ‘ 𝐸 )  ∘  ( 1st  ‘ 〈 𝐾 ,  𝐿 〉 ) )  =  ( ( Id ‘ 𝐸 )  ∘  𝐾 ) )  | 
						
						
							| 87 | 
							
								78 86
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐷  FuncCat  𝐸 ) ) ‘ 〈 𝐾 ,  𝐿 〉 )  =  ( ( Id ‘ 𝐸 )  ∘  𝐾 ) )  | 
						
						
							| 88 | 
							
								66 72 49 76
							 | 
							fucid | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐶  FuncCat  𝐷 ) ) ‘ 〈 𝐹 ,  𝐺 〉 )  =  ( ( Id ‘ 𝐷 )  ∘  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							relfunc | 
							⊢ Rel  ( 𝐶  Func  𝐷 )  | 
						
						
							| 90 | 
							
								89
							 | 
							brrelex1i | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  →  𝐹  ∈  V )  | 
						
						
							| 91 | 
							
								6 90
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  V )  | 
						
						
							| 92 | 
							
								89
							 | 
							brrelex2i | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  →  𝐺  ∈  V )  | 
						
						
							| 93 | 
							
								6 92
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  V )  | 
						
						
							| 94 | 
							
								
							 | 
							op1stg | 
							⊢ ( ( 𝐹  ∈  V  ∧  𝐺  ∈  V )  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 )  | 
						
						
							| 95 | 
							
								91 93 94
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 )  =  𝐹 )  | 
						
						
							| 96 | 
							
								95
							 | 
							coeq2d | 
							⊢ ( 𝜑  →  ( ( Id ‘ 𝐷 )  ∘  ( 1st  ‘ 〈 𝐹 ,  𝐺 〉 ) )  =  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) )  | 
						
						
							| 97 | 
							
								88 96
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐶  FuncCat  𝐷 ) ) ‘ 〈 𝐹 ,  𝐺 〉 )  =  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) )  | 
						
						
							| 98 | 
							
								87 97
							 | 
							opeq12d | 
							⊢ ( 𝜑  →  〈 ( ( Id ‘ ( 𝐷  FuncCat  𝐸 ) ) ‘ 〈 𝐾 ,  𝐿 〉 ) ,  ( ( Id ‘ ( 𝐶  FuncCat  𝐷 ) ) ‘ 〈 𝐹 ,  𝐺 〉 ) 〉  =  〈 ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ,  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) 〉 )  | 
						
						
							| 99 | 
							
								62 77 98
							 | 
							3eqtrd | 
							⊢ ( 𝜑  →  (  1  ‘ 𝑈 )  =  〈 ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ,  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) 〉 )  | 
						
						
							| 100 | 
							
								99
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( ( 𝑈 𝑃 𝑈 ) ‘ (  1  ‘ 𝑈 ) )  =  ( ( 𝑈 𝑃 𝑈 ) ‘ 〈 ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ,  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) 〉 ) )  | 
						
						
							| 101 | 
							
								
							 | 
							df-ov | 
							⊢ ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 )  ∘  𝐹 ) )  =  ( ( 𝑈 𝑃 𝑈 ) ‘ 〈 ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ,  ( ( Id ‘ 𝐷 )  ∘  𝐹 ) 〉 )  | 
						
						
							| 102 | 
							
								100 101
							 | 
							eqtr4di | 
							⊢ ( 𝜑  →  ( ( 𝑈 𝑃 𝑈 ) ‘ (  1  ‘ 𝑈 ) )  =  ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ) )  | 
						
						
							| 103 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 104 | 
							
								66 103
							 | 
							fuchom | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( Hom  ‘ ( 𝐶  FuncCat  𝐷 ) )  | 
						
						
							| 105 | 
							
								70 104 72 68 76
							 | 
							catidcl | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐶  FuncCat  𝐷 ) ) ‘ 〈 𝐹 ,  𝐺 〉 )  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝐹 ,  𝐺 〉 ) )  | 
						
						
							| 106 | 
							
								97 105
							 | 
							eqeltrrd | 
							⊢ ( 𝜑  →  ( ( Id ‘ 𝐷 )  ∘  𝐹 )  ∈  ( 〈 𝐹 ,  𝐺 〉 ( 𝐶  Nat  𝐷 ) 〈 𝐹 ,  𝐺 〉 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐷  Nat  𝐸 )  =  ( 𝐷  Nat  𝐸 )  | 
						
						
							| 108 | 
							
								63 107
							 | 
							fuchom | 
							⊢ ( 𝐷  Nat  𝐸 )  =  ( Hom  ‘ ( 𝐷  FuncCat  𝐸 ) )  | 
						
						
							| 109 | 
							
								69 108 71 65 74
							 | 
							catidcl | 
							⊢ ( 𝜑  →  ( ( Id ‘ ( 𝐷  FuncCat  𝐸 ) ) ‘ 〈 𝐾 ,  𝐿 〉 )  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝐾 ,  𝐿 〉 ) )  | 
						
						
							| 110 | 
							
								87 109
							 | 
							eqeltrrd | 
							⊢ ( 𝜑  →  ( ( Id ‘ 𝐸 )  ∘  𝐾 )  ∈  ( 〈 𝐾 ,  𝐿 〉 ( 𝐷  Nat  𝐸 ) 〈 𝐾 ,  𝐿 〉 ) )  | 
						
						
							| 111 | 
							
								1 8 8 106 110
							 | 
							fuco22 | 
							⊢ ( 𝜑  →  ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 )  ∘  𝐹 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 112 | 
							
								102 111
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝑈 𝑃 𝑈 ) ‘ (  1  ‘ 𝑈 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ( ( ( Id ‘ 𝐸 )  ∘  𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ,  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 )  ∘  𝐹 ) ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 113 | 
							
								1 6 7 8 4 5 15
							 | 
							fuco11id | 
							⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) )  =  ( ( Id ‘ 𝐸 )  ∘  ( 𝐾  ∘  𝐹 ) ) )  | 
						
						
							| 114 | 
							
								61 112 113
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( ( 𝑈 𝑃 𝑈 ) ‘ (  1  ‘ 𝑈 ) )  =  ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) )  |