| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoid.o |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∘F 𝐸 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
fucoid.t |
⊢ 𝑇 = ( ( 𝐷 FuncCat 𝐸 ) ×c ( 𝐶 FuncCat 𝐷 ) ) |
| 3 |
|
fucoid.1 |
⊢ 1 = ( Id ‘ 𝑇 ) |
| 4 |
|
fucoid.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐸 ) |
| 5 |
|
fucoid.i |
⊢ 𝐼 = ( Id ‘ 𝑄 ) |
| 6 |
|
fucoid.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
|
fucoid.k |
⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 8 |
|
fucoid.u |
⊢ ( 𝜑 → 𝑈 = 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) |
| 9 |
|
ovex |
⊢ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ∈ V |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 11 |
9 10
|
fnmpti |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) Fn ( Base ‘ 𝐶 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) Fn ( Base ‘ 𝐶 ) ) |
| 13 |
7
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 15 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
| 16 |
14 15
|
cidfn |
⊢ ( 𝐸 ∈ Cat → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 17 |
13 16
|
syl |
⊢ ( 𝜑 → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 19 |
18 14 7
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 21 |
20 18 6
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 22 |
19 21
|
fcod |
⊢ ( 𝜑 → ( 𝐾 ∘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 23 |
|
fnfco |
⊢ ( ( ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ∧ ( 𝐾 ∘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) Fn ( Base ‘ 𝐶 ) ) |
| 24 |
17 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) Fn ( Base ‘ 𝐶 ) ) |
| 25 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑤 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 26 |
25 25
|
opeq12d |
⊢ ( 𝑥 = 𝑤 → 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 = 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ) |
| 27 |
26 25
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 28 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑤 → ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 30 |
29 29
|
oveq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) |
| 32 |
30 31
|
fveq12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) |
| 33 |
27 28 32
|
oveq123d |
⊢ ( 𝑥 = 𝑤 → ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) = ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 35 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) ∈ V ) |
| 36 |
10 33 34 35
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) ‘ 𝑤 ) = ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) ) |
| 37 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 38 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
| 39 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝐾 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 40 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 |
39 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝐸 ) ) |
| 42 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 43 |
14 37 15 38 41
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ∈ ( ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ( Hom ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 44 |
14 37 15 38 41 42 41 43
|
catlid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 45 |
39 40
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 46 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 47 |
46 34
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 49 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 50 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) |
| 51 |
18 49 15 50 40
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 52 |
48 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 53 |
45 52
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) = ( ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 54 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐾 ∘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 55 |
54 34
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ‘ 𝑤 ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑤 ) ) ) |
| 56 |
46 34
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑤 ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐸 ) ‘ ( ( 𝐾 ∘ 𝐹 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 58 |
55 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ‘ 𝑤 ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 59 |
44 53 58
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑤 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑤 ) ) ) ( ( ( 𝐹 ‘ 𝑤 ) 𝐿 ( 𝐹 ‘ 𝑤 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑤 ) ) ) = ( ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ‘ 𝑤 ) ) |
| 60 |
36 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) ‘ 𝑤 ) = ( ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ‘ 𝑤 ) ) |
| 61 |
12 24 60
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ) |
| 62 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 1 ‘ 𝑈 ) = ( 1 ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) ) |
| 63 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 64 |
7
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 65 |
63 64 13
|
fuccat |
⊢ ( 𝜑 → ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) |
| 66 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐷 ) = ( 𝐶 FuncCat 𝐷 ) |
| 67 |
6
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 68 |
66 67 64
|
fuccat |
⊢ ( 𝜑 → ( 𝐶 FuncCat 𝐷 ) ∈ Cat ) |
| 69 |
63
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 70 |
66
|
fucbas |
⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ ( 𝐶 FuncCat 𝐷 ) ) |
| 71 |
|
eqid |
⊢ ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) = ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 72 |
|
eqid |
⊢ ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) = ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) |
| 73 |
|
df-br |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 74 |
7 73
|
sylib |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 75 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 76 |
6 75
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 77 |
2 65 68 69 70 71 72 3 74 76
|
xpcid |
⊢ ( 𝜑 → ( 1 ‘ 〈 〈 𝐾 , 𝐿 〉 , 〈 𝐹 , 𝐺 〉 〉 ) = 〈 ( ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) ‘ 〈 𝐾 , 𝐿 〉 ) , ( ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) ‘ 〈 𝐹 , 𝐺 〉 ) 〉 ) |
| 78 |
63 71 15 74
|
fucid |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) ‘ 〈 𝐾 , 𝐿 〉 ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ) ) |
| 79 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 80 |
79
|
brrelex1i |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 → 𝐾 ∈ V ) |
| 81 |
7 80
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 82 |
79
|
brrelex2i |
⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 → 𝐿 ∈ V ) |
| 83 |
7 82
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 84 |
|
op1stg |
⊢ ( ( 𝐾 ∈ V ∧ 𝐿 ∈ V ) → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 85 |
81 83 84
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 86 |
85
|
coeq2d |
⊢ ( 𝜑 → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ) = ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ) |
| 87 |
78 86
|
eqtrd |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) ‘ 〈 𝐾 , 𝐿 〉 ) = ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ) |
| 88 |
66 72 49 76
|
fucid |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) ‘ 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) ) |
| 89 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 90 |
89
|
brrelex1i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐹 ∈ V ) |
| 91 |
6 90
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 92 |
89
|
brrelex2i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐺 ∈ V ) |
| 93 |
6 92
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 94 |
|
op1stg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 95 |
91 93 94
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 96 |
95
|
coeq2d |
⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) = ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ) |
| 97 |
88 96
|
eqtrd |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) ‘ 〈 𝐹 , 𝐺 〉 ) = ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ) |
| 98 |
87 97
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) ‘ 〈 𝐾 , 𝐿 〉 ) , ( ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) ‘ 〈 𝐹 , 𝐺 〉 ) 〉 = 〈 ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) , ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) 〉 ) |
| 99 |
62 77 98
|
3eqtrd |
⊢ ( 𝜑 → ( 1 ‘ 𝑈 ) = 〈 ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) , ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) 〉 ) |
| 100 |
99
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑈 ) ‘ ( 1 ‘ 𝑈 ) ) = ( ( 𝑈 𝑃 𝑈 ) ‘ 〈 ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) , ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) 〉 ) ) |
| 101 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ) = ( ( 𝑈 𝑃 𝑈 ) ‘ 〈 ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) , ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) 〉 ) |
| 102 |
100 101
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑈 ) ‘ ( 1 ‘ 𝑈 ) ) = ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ) ) |
| 103 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
| 104 |
66 103
|
fuchom |
⊢ ( 𝐶 Nat 𝐷 ) = ( Hom ‘ ( 𝐶 FuncCat 𝐷 ) ) |
| 105 |
70 104 72 68 76
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐶 FuncCat 𝐷 ) ) ‘ 〈 𝐹 , 𝐺 〉 ) ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝐹 , 𝐺 〉 ) ) |
| 106 |
97 105
|
eqeltrrd |
⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ∈ ( 〈 𝐹 , 𝐺 〉 ( 𝐶 Nat 𝐷 ) 〈 𝐹 , 𝐺 〉 ) ) |
| 107 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 108 |
63 107
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 109 |
69 108 71 65 74
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ ( 𝐷 FuncCat 𝐸 ) ) ‘ 〈 𝐾 , 𝐿 〉 ) ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝐾 , 𝐿 〉 ) ) |
| 110 |
87 109
|
eqeltrrd |
⊢ ( 𝜑 → ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ∈ ( 〈 𝐾 , 𝐿 〉 ( 𝐷 Nat 𝐸 ) 〈 𝐾 , 𝐿 〉 ) ) |
| 111 |
1 8 8 106 110
|
fuco22 |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ( 𝑈 𝑃 𝑈 ) ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) ) |
| 112 |
102 111
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑈 ) ‘ ( 1 ‘ 𝑈 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( ( ( Id ‘ 𝐸 ) ∘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( 〈 ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑥 ) ) ‘ ( ( ( Id ‘ 𝐷 ) ∘ 𝐹 ) ‘ 𝑥 ) ) ) ) ) |
| 113 |
1 6 7 8 4 5 15
|
fuco11id |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 𝐾 ∘ 𝐹 ) ) ) |
| 114 |
61 112 113
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑈 ) ‘ ( 1 ‘ 𝑈 ) ) = ( 𝐼 ‘ ( 𝑂 ‘ 𝑈 ) ) ) |