Step |
Hyp |
Ref |
Expression |
1 |
|
fucofulem2.b |
|- B = ( ( D Func E ) X. ( C Func D ) ) |
2 |
|
fucofulem2.h |
|- H = ( Hom ` ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) ) |
3 |
|
eqid |
|- ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) = ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) |
4 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
5 |
4
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
6 |
|
eqid |
|- ( C FuncCat D ) = ( C FuncCat D ) |
7 |
6
|
fucbas |
|- ( C Func D ) = ( Base ` ( C FuncCat D ) ) |
8 |
3 5 7
|
xpcbas |
|- ( ( D Func E ) X. ( C Func D ) ) = ( Base ` ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) ) |
9 |
1 8
|
eqtri |
|- B = ( Base ` ( ( D FuncCat E ) Xc. ( C FuncCat D ) ) ) |
10 |
9
|
funcf2lem2 |
|- ( G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( C Nat E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) <-> ( G Fn ( B X. B ) /\ A. m e. B A. n e. B ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
11 |
|
fnov |
|- ( G Fn ( B X. B ) <-> G = ( u e. B , v e. B |-> ( u G v ) ) ) |
12 |
|
ffnfv |
|- ( ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> ( ( m G n ) Fn ( m H n ) /\ A. r e. ( m H n ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
13 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
14 |
4 13
|
fuchom |
|- ( D Nat E ) = ( Hom ` ( D FuncCat E ) ) |
15 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
16 |
6 15
|
fuchom |
|- ( C Nat D ) = ( Hom ` ( C FuncCat D ) ) |
17 |
|
simpl |
|- ( ( m e. B /\ n e. B ) -> m e. B ) |
18 |
|
simpr |
|- ( ( m e. B /\ n e. B ) -> n e. B ) |
19 |
3 9 14 16 2 17 18
|
xpchom |
|- ( ( m e. B /\ n e. B ) -> ( m H n ) = ( ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) X. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ) ) |
20 |
19
|
fneq2d |
|- ( ( m e. B /\ n e. B ) -> ( ( m G n ) Fn ( m H n ) <-> ( m G n ) Fn ( ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) X. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ) ) ) |
21 |
|
fnov |
|- ( ( m G n ) Fn ( ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) X. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ) <-> ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) ) |
22 |
20 21
|
bitrdi |
|- ( ( m e. B /\ n e. B ) -> ( ( m G n ) Fn ( m H n ) <-> ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) ) ) |
23 |
19
|
raleqdv |
|- ( ( m e. B /\ n e. B ) -> ( A. r e. ( m H n ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> A. r e. ( ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) X. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
24 |
|
fveq2 |
|- ( r = <. p , q >. -> ( ( m G n ) ` r ) = ( ( m G n ) ` <. p , q >. ) ) |
25 |
|
df-ov |
|- ( p ( m G n ) q ) = ( ( m G n ) ` <. p , q >. ) |
26 |
24 25
|
eqtr4di |
|- ( r = <. p , q >. -> ( ( m G n ) ` r ) = ( p ( m G n ) q ) ) |
27 |
26
|
eleq1d |
|- ( r = <. p , q >. -> ( ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
28 |
27
|
ralxp |
|- ( A. r e. ( ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) X. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) |
29 |
23 28
|
bitrdi |
|- ( ( m e. B /\ n e. B ) -> ( A. r e. ( m H n ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
30 |
22 29
|
anbi12d |
|- ( ( m e. B /\ n e. B ) -> ( ( ( m G n ) Fn ( m H n ) /\ A. r e. ( m H n ) ( ( m G n ) ` r ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) <-> ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |
31 |
12 30
|
bitrid |
|- ( ( m e. B /\ n e. B ) -> ( ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |
32 |
31
|
adantl |
|- ( ( T. /\ ( m e. B /\ n e. B ) ) -> ( ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |
33 |
32
|
2ralbidva |
|- ( T. -> ( A. m e. B A. n e. B ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> A. m e. B A. n e. B ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |
34 |
33
|
mptru |
|- ( A. m e. B A. n e. B ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) <-> A. m e. B A. n e. B ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) |
35 |
11 34
|
anbi12i |
|- ( ( G Fn ( B X. B ) /\ A. m e. B A. n e. B ( m G n ) : ( m H n ) --> ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) <-> ( G = ( u e. B , v e. B |-> ( u G v ) ) /\ A. m e. B A. n e. B ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |
36 |
10 35
|
bitri |
|- ( G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( C Nat E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) <-> ( G = ( u e. B , v e. B |-> ( u G v ) ) /\ A. m e. B A. n e. B ( ( m G n ) = ( b e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) , a e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) |-> ( b ( m G n ) a ) ) /\ A. p e. ( ( 1st ` m ) ( D Nat E ) ( 1st ` n ) ) A. q e. ( ( 2nd ` m ) ( C Nat D ) ( 2nd ` n ) ) ( p ( m G n ) q ) e. ( ( F ` m ) ( C Nat E ) ( F ` n ) ) ) ) ) |