Metamath Proof Explorer


Theorem fucofulem2

Description: Lemma for proving functor theorems. Maybe consider eufnfv to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses fucofulem2.b B = D Func E × C Func D
fucofulem2.h H = Hom D FuncCat E × c C FuncCat D
Assertion fucofulem2 G z B × B F 1 st z C Nat E F 2 nd z H z G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n

Proof

Step Hyp Ref Expression
1 fucofulem2.b B = D Func E × C Func D
2 fucofulem2.h H = Hom D FuncCat E × c C FuncCat D
3 eqid D FuncCat E × c C FuncCat D = D FuncCat E × c C FuncCat D
4 eqid D FuncCat E = D FuncCat E
5 4 fucbas D Func E = Base D FuncCat E
6 eqid C FuncCat D = C FuncCat D
7 6 fucbas C Func D = Base C FuncCat D
8 3 5 7 xpcbas D Func E × C Func D = Base D FuncCat E × c C FuncCat D
9 1 8 eqtri B = Base D FuncCat E × c C FuncCat D
10 9 funcf2lem2 G z B × B F 1 st z C Nat E F 2 nd z H z G Fn B × B m B n B m G n : m H n F m C Nat E F n
11 fnov G Fn B × B G = u B , v B u G v
12 ffnfv m G n : m H n F m C Nat E F n m G n Fn m H n r m H n m G n r F m C Nat E F n
13 eqid D Nat E = D Nat E
14 4 13 fuchom D Nat E = Hom D FuncCat E
15 eqid C Nat D = C Nat D
16 6 15 fuchom C Nat D = Hom C FuncCat D
17 simpl m B n B m B
18 simpr m B n B n B
19 3 9 14 16 2 17 18 xpchom m B n B m H n = 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n
20 19 fneq2d m B n B m G n Fn m H n m G n Fn 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n
21 fnov m G n Fn 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a
22 20 21 bitrdi m B n B m G n Fn m H n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a
23 19 raleqdv m B n B r m H n m G n r F m C Nat E F n r 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n r F m C Nat E F n
24 fveq2 r = p q m G n r = m G n p q
25 df-ov p m G n q = m G n p q
26 24 25 eqtr4di r = p q m G n r = p m G n q
27 26 eleq1d r = p q m G n r F m C Nat E F n p m G n q F m C Nat E F n
28 27 ralxp r 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n r F m C Nat E F n p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
29 23 28 bitrdi m B n B r m H n m G n r F m C Nat E F n p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
30 22 29 anbi12d m B n B m G n Fn m H n r m H n m G n r F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
31 12 30 bitrid m B n B m G n : m H n F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
32 31 adantl m B n B m G n : m H n F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
33 32 2ralbidva m B n B m G n : m H n F m C Nat E F n m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
34 33 mptru m B n B m G n : m H n F m C Nat E F n m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
35 11 34 anbi12i G Fn B × B m B n B m G n : m H n F m C Nat E F n G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
36 10 35 bitri G z B × B F 1 st z C Nat E F 2 nd z H z G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n