Metamath Proof Explorer


Theorem tposcurf1cl

Description: The partially evaluated transposed curry functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses tposcurf1.g
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
tposcurf1.a
|- A = ( Base ` C )
tposcurf1.c
|- ( ph -> C e. Cat )
tposcurf1.d
|- ( ph -> D e. Cat )
tposcurf1.f
|- ( ph -> F e. ( ( D Xc. C ) Func E ) )
tposcurf1.x
|- ( ph -> X e. A )
tposcurf1.k
|- ( ph -> K = ( ( 1st ` G ) ` X ) )
Assertion tposcurf1cl
|- ( ph -> K e. ( D Func E ) )

Proof

Step Hyp Ref Expression
1 tposcurf1.g
 |-  ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
2 tposcurf1.a
 |-  A = ( Base ` C )
3 tposcurf1.c
 |-  ( ph -> C e. Cat )
4 tposcurf1.d
 |-  ( ph -> D e. Cat )
5 tposcurf1.f
 |-  ( ph -> F e. ( ( D Xc. C ) Func E ) )
6 tposcurf1.x
 |-  ( ph -> X e. A )
7 tposcurf1.k
 |-  ( ph -> K = ( ( 1st ` G ) ` X ) )
8 1 fveq2d
 |-  ( ph -> ( 1st ` G ) = ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) )
9 8 fveq1d
 |-  ( ph -> ( ( 1st ` G ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) )
10 7 9 eqtrd
 |-  ( ph -> K = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) )
11 eqid
 |-  ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) )
12 eqidd
 |-  ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) )
13 3 4 5 12 cofuswapfcl
 |-  ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) )
14 eqid
 |-  ( Base ` D ) = ( Base ` D )
15 eqid
 |-  ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X )
16 11 2 3 4 13 14 6 15 curf1cl
 |-  ( ph -> ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) e. ( D Func E ) )
17 10 16 eqeltrd
 |-  ( ph -> K e. ( D Func E ) )