| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) |
| 2 |
|
tposcurf1.a |
|- A = ( Base ` C ) |
| 3 |
|
tposcurf1.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
tposcurf1.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
tposcurf1.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 6 |
|
tposcurf1.x |
|- ( ph -> X e. A ) |
| 7 |
|
tposcurf1.k |
|- ( ph -> K = ( ( 1st ` G ) ` X ) ) |
| 8 |
1
|
fveq2d |
|- ( ph -> ( 1st ` G ) = ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ) |
| 9 |
8
|
fveq1d |
|- ( ph -> ( ( 1st ` G ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 10 |
7 9
|
eqtrd |
|- ( ph -> K = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 11 |
|
eqid |
|- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) |
| 12 |
|
eqidd |
|- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 13 |
3 4 5 12
|
cofuswapfcl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 14 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 15 |
|
eqid |
|- ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) |
| 16 |
11 2 3 4 13 14 6 15
|
curf1cl |
|- ( ph -> ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) e. ( D Func E ) ) |
| 17 |
10 16
|
eqeltrd |
|- ( ph -> K e. ( D Func E ) ) |