| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) |
| 2 |
|
tposcurf1.a |
|- A = ( Base ` C ) |
| 3 |
|
tposcurf1.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
tposcurf1.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
tposcurf1.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 6 |
|
tposcurf1.x |
|- ( ph -> X e. A ) |
| 7 |
|
tposcurf1.k |
|- ( ph -> K = ( ( 1st ` G ) ` X ) ) |
| 8 |
|
tposcurf1.b |
|- B = ( Base ` D ) |
| 9 |
|
tposcurf11.y |
|- ( ph -> Y e. B ) |
| 10 |
1
|
fveq2d |
|- ( ph -> ( 1st ` G ) = ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( ( 1st ` G ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 12 |
7 11
|
eqtrd |
|- ( ph -> K = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 13 |
12
|
fveq2d |
|- ( ph -> ( 1st ` K ) = ( 1st ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) ) |
| 14 |
13
|
fveq1d |
|- ( ph -> ( ( 1st ` K ) ` Y ) = ( ( 1st ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) ` Y ) ) |
| 15 |
|
eqid |
|- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) |
| 16 |
|
eqidd |
|- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 17 |
3 4 5 16
|
cofuswapfcl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 18 |
|
eqid |
|- ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) |
| 19 |
15 2 3 4 17 8 6 18 9
|
curf11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) ` Y ) = ( X ( 1st ` ( F o.func ( C swapF D ) ) ) Y ) ) |
| 20 |
3 4 5 16 2 8 6 9
|
cofuswapf1 |
|- ( ph -> ( X ( 1st ` ( F o.func ( C swapF D ) ) ) Y ) = ( Y ( 1st ` F ) X ) ) |
| 21 |
14 19 20
|
3eqtrd |
|- ( ph -> ( ( 1st ` K ) ` Y ) = ( Y ( 1st ` F ) X ) ) |