| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuswapf1.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
cofuswapf1.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
cofuswapf1.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 4 |
|
cofuswapf1.g |
|- ( ph -> G = ( F o.func ( C swapF D ) ) ) |
| 5 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 6 |
|
eqid |
|- ( D Xc. C ) = ( D Xc. C ) |
| 7 |
1 2 5 6
|
swapffunca |
|- ( ph -> ( C swapF D ) e. ( ( C Xc. D ) Func ( D Xc. C ) ) ) |
| 8 |
7 3
|
cofucl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 9 |
4 8
|
eqeltrd |
|- ( ph -> G e. ( ( C Xc. D ) Func E ) ) |