Metamath Proof Explorer


Theorem cofuswapfcl

Description: The bifunctor pre-composed with a swap functor is a bifunctor. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses cofuswapf1.c
|- ( ph -> C e. Cat )
cofuswapf1.d
|- ( ph -> D e. Cat )
cofuswapf1.f
|- ( ph -> F e. ( ( D Xc. C ) Func E ) )
cofuswapf1.g
|- ( ph -> G = ( F o.func ( C swapF D ) ) )
Assertion cofuswapfcl
|- ( ph -> G e. ( ( C Xc. D ) Func E ) )

Proof

Step Hyp Ref Expression
1 cofuswapf1.c
 |-  ( ph -> C e. Cat )
2 cofuswapf1.d
 |-  ( ph -> D e. Cat )
3 cofuswapf1.f
 |-  ( ph -> F e. ( ( D Xc. C ) Func E ) )
4 cofuswapf1.g
 |-  ( ph -> G = ( F o.func ( C swapF D ) ) )
5 eqid
 |-  ( C Xc. D ) = ( C Xc. D )
6 eqid
 |-  ( D Xc. C ) = ( D Xc. C )
7 1 2 5 6 swapffunca
 |-  ( ph -> ( C swapF D ) e. ( ( C Xc. D ) Func ( D Xc. C ) ) )
8 7 3 cofucl
 |-  ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) )
9 4 8 eqeltrd
 |-  ( ph -> G e. ( ( C Xc. D ) Func E ) )