Metamath Proof Explorer


Theorem swapffunca

Description: The swap functor is a functor. (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses swapfid.c
|- ( ph -> C e. Cat )
swapfid.d
|- ( ph -> D e. Cat )
swapfid.s
|- S = ( C Xc. D )
swapfid.t
|- T = ( D Xc. C )
Assertion swapffunca
|- ( ph -> ( C swapF D ) e. ( S Func T ) )

Proof

Step Hyp Ref Expression
1 swapfid.c
 |-  ( ph -> C e. Cat )
2 swapfid.d
 |-  ( ph -> D e. Cat )
3 swapfid.s
 |-  S = ( C Xc. D )
4 swapfid.t
 |-  T = ( D Xc. C )
5 1 2 swapfelvv
 |-  ( ph -> ( C swapF D ) e. ( _V X. _V ) )
6 1st2nd2
 |-  ( ( C swapF D ) e. ( _V X. _V ) -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. )
7 5 6 syl
 |-  ( ph -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. )
8 1 2 3 4 7 swapffunc
 |-  ( ph -> ( 1st ` ( C swapF D ) ) ( S Func T ) ( 2nd ` ( C swapF D ) ) )
9 df-br
 |-  ( ( 1st ` ( C swapF D ) ) ( S Func T ) ( 2nd ` ( C swapF D ) ) <-> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( S Func T ) )
10 8 9 sylib
 |-  ( ph -> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( S Func T ) )
11 7 10 eqeltrd
 |-  ( ph -> ( C swapF D ) e. ( S Func T ) )