| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
1 2
|
swapfelvv |
|- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) |
| 6 |
|
1st2nd2 |
|- ( ( C swapF D ) e. ( _V X. _V ) -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 8 |
1 2 3 4 7
|
swapffunc |
|- ( ph -> ( 1st ` ( C swapF D ) ) ( S Func T ) ( 2nd ` ( C swapF D ) ) ) |
| 9 |
|
df-br |
|- ( ( 1st ` ( C swapF D ) ) ( S Func T ) ( 2nd ` ( C swapF D ) ) <-> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( S Func T ) ) |
| 10 |
8 9
|
sylib |
|- ( ph -> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( S Func T ) ) |
| 11 |
7 10
|
eqeltrd |
|- ( ph -> ( C swapF D ) e. ( S Func T ) ) |