| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
|
swapfid.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 7 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 8 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
| 9 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
| 10 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
| 11 |
|
eqid |
|- ( Id ` T ) = ( Id ` T ) |
| 12 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
| 13 |
|
eqid |
|- ( comp ` T ) = ( comp ` T ) |
| 14 |
3 1 2
|
xpccat |
|- ( ph -> S e. Cat ) |
| 15 |
4 2 1
|
xpccat |
|- ( ph -> T e. Cat ) |
| 16 |
5 3 4 1 2 6 7
|
swapf1f1o |
|- ( ph -> O : ( Base ` S ) -1-1-onto-> ( Base ` T ) ) |
| 17 |
|
f1of |
|- ( O : ( Base ` S ) -1-1-onto-> ( Base ` T ) -> O : ( Base ` S ) --> ( Base ` T ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> O : ( Base ` S ) --> ( Base ` T ) ) |
| 19 |
1 2 3 6 5
|
swapf2fn |
|- ( ph -> P Fn ( ( Base ` S ) X. ( Base ` S ) ) ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( C swapF D ) = <. O , P >. ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> x e. ( Base ` S ) ) |
| 22 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
| 23 |
20 3 4 8 9 6 21 22
|
swapf2f1oa |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x P y ) : ( x ( Hom ` S ) y ) -1-1-onto-> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) |
| 24 |
|
f1of |
|- ( ( x P y ) : ( x ( Hom ` S ) y ) -1-1-onto-> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) -> ( x P y ) : ( x ( Hom ` S ) y ) --> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x P y ) : ( x ( Hom ` S ) y ) --> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) |
| 26 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> C e. Cat ) |
| 27 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> D e. Cat ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> ( C swapF D ) = <. O , P >. ) |
| 29 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
| 30 |
26 27 3 4 28 6 29 10 11
|
swapfida |
|- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( x P x ) ` ( ( Id ` S ) ` x ) ) = ( ( Id ` T ) ` ( O ` x ) ) ) |
| 31 |
1
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> C e. Cat ) |
| 32 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> D e. Cat ) |
| 33 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> ( C swapF D ) = <. O , P >. ) |
| 34 |
|
simp21 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> x e. ( Base ` S ) ) |
| 35 |
|
simp22 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> y e. ( Base ` S ) ) |
| 36 |
|
simp23 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> z e. ( Base ` S ) ) |
| 37 |
|
simp3l |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> m e. ( x ( Hom ` S ) y ) ) |
| 38 |
|
simp3r |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> n e. ( y ( Hom ` S ) z ) ) |
| 39 |
31 32 3 4 33 6 34 35 36 8 37 38 12 13
|
swapfcoa |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) /\ ( m e. ( x ( Hom ` S ) y ) /\ n e. ( y ( Hom ` S ) z ) ) ) -> ( ( x P z ) ` ( n ( <. x , y >. ( comp ` S ) z ) m ) ) = ( ( ( y P z ) ` n ) ( <. ( O ` x ) , ( O ` y ) >. ( comp ` T ) ( O ` z ) ) ( ( x P y ) ` m ) ) ) |
| 40 |
6 7 8 9 10 11 12 13 14 15 18 19 25 30 39
|
isfuncd |
|- ( ph -> O ( S Func T ) P ) |