| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
swapfid.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 3 |
|
swapfid.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapfid.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐶 ) |
| 5 |
|
swapfid.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝑇 ) = ( Hom ‘ 𝑇 ) |
| 10 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
| 11 |
|
eqid |
⊢ ( Id ‘ 𝑇 ) = ( Id ‘ 𝑇 ) |
| 12 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
| 13 |
|
eqid |
⊢ ( comp ‘ 𝑇 ) = ( comp ‘ 𝑇 ) |
| 14 |
3 1 2
|
xpccat |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 15 |
4 2 1
|
xpccat |
⊢ ( 𝜑 → 𝑇 ∈ Cat ) |
| 16 |
5 3 4 1 2 6 7
|
swapf1f1o |
⊢ ( 𝜑 → 𝑂 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
| 17 |
|
f1of |
⊢ ( 𝑂 : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) → 𝑂 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑂 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 19 |
1 2 3 6 5
|
swapf2fn |
⊢ ( 𝜑 → 𝑃 Fn ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 23 |
20 3 4 8 9 6 21 22
|
swapf2f1oa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 𝑃 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) –1-1-onto→ ( ( 𝑂 ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( 𝑂 ‘ 𝑦 ) ) ) |
| 24 |
|
f1of |
⊢ ( ( 𝑥 𝑃 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) –1-1-onto→ ( ( 𝑂 ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( 𝑂 ‘ 𝑦 ) ) → ( 𝑥 𝑃 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ⟶ ( ( 𝑂 ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( 𝑂 ‘ 𝑦 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 𝑃 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ⟶ ( ( 𝑂 ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( 𝑂 ‘ 𝑦 ) ) ) |
| 26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐶 ∈ Cat ) |
| 27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐷 ∈ Cat ) |
| 28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 30 |
26 27 3 4 28 6 29 10 11
|
swapfida |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑥 𝑃 𝑥 ) ‘ ( ( Id ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑇 ) ‘ ( 𝑂 ‘ 𝑥 ) ) ) |
| 31 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 32 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝐷 ∈ Cat ) |
| 33 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 34 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 35 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 36 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
| 37 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) |
| 38 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) |
| 39 |
31 32 3 4 33 6 34 35 36 8 37 38 12 13
|
swapfcoa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑆 ) 𝑧 ) ) ) → ( ( 𝑥 𝑃 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑆 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑃 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑂 ‘ 𝑥 ) , ( 𝑂 ‘ 𝑦 ) 〉 ( comp ‘ 𝑇 ) ( 𝑂 ‘ 𝑧 ) ) ( ( 𝑥 𝑃 𝑦 ) ‘ 𝑚 ) ) ) |
| 40 |
6 7 8 9 10 11 12 13 14 15 18 19 25 30 39
|
isfuncd |
⊢ ( 𝜑 → 𝑂 ( 𝑆 Func 𝑇 ) 𝑃 ) |