| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
swapf2fvala.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapf2fvala.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
swapf1val.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 6 |
|
eqid |
⊢ ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 7 |
|
ovex |
⊢ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ∈ V |
| 9 |
6 8
|
fnmpoi |
⊢ ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) Fn ( 𝐵 × 𝐵 ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) ) |
| 11 |
1 2 3 4 10 5
|
swapf2fval |
⊢ ( 𝜑 → 𝑃 = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 12 |
11
|
fneq1d |
⊢ ( 𝜑 → ( 𝑃 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 13 |
9 12
|
mpbiri |
⊢ ( 𝜑 → 𝑃 Fn ( 𝐵 × 𝐵 ) ) |