Metamath Proof Explorer


Theorem swapf2fn

Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c ( 𝜑𝐶𝑈 )
swapfval.d ( 𝜑𝐷𝑉 )
swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
swapf1val.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
Assertion swapf2fn ( 𝜑𝑃 Fn ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 swapfval.c ( 𝜑𝐶𝑈 )
2 swapfval.d ( 𝜑𝐷𝑉 )
3 swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
4 swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
5 swapf1val.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 eqid ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) )
7 ovex ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ∈ V
8 7 mptex ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ∈ V
9 6 8 fnmpoi ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) Fn ( 𝐵 × 𝐵 )
10 eqidd ( 𝜑 → ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) )
11 1 2 3 4 10 5 swapf2fval ( 𝜑𝑃 = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) )
12 11 fneq1d ( 𝜑 → ( 𝑃 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) Fn ( 𝐵 × 𝐵 ) ) )
13 9 12 mpbiri ( 𝜑𝑃 Fn ( 𝐵 × 𝐵 ) )