| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
swapf2fvala.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapf2fvala.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
swapf2fvala.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 6 |
|
swapf2fval.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) = ( 2nd ‘ 〈 𝑂 , 𝑃 〉 ) ) |
| 8 |
1 2 3 4 5
|
swapf2fvala |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 9 |
1 2
|
swapfelvv |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) ) |
| 10 |
6 9
|
eqeltrrd |
⊢ ( 𝜑 → 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) ) |
| 11 |
|
opelxp |
⊢ ( 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) ↔ ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) ) |
| 12 |
11
|
biimpi |
⊢ ( 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) → ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) ) |
| 13 |
|
op2ndg |
⊢ ( ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) → ( 2nd ‘ 〈 𝑂 , 𝑃 〉 ) = 𝑃 ) |
| 14 |
10 12 13
|
3syl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑂 , 𝑃 〉 ) = 𝑃 ) |
| 15 |
7 8 14
|
3eqtr3rd |
⊢ ( 𝜑 → 𝑃 = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |