Metamath Proof Explorer


Theorem swapf2fval

Description: The morphism part of the swap functor. See also swapf2fvala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c ( 𝜑𝐶𝑈 )
swapfval.d ( 𝜑𝐷𝑉 )
swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
swapf2fvala.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
swapf2fval.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
Assertion swapf2fval ( 𝜑𝑃 = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ { 𝑓 } ) ) )

Proof

Step Hyp Ref Expression
1 swapfval.c ( 𝜑𝐶𝑈 )
2 swapfval.d ( 𝜑𝐷𝑉 )
3 swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
4 swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
5 swapf2fvala.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
6 swapf2fval.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
7 6 fveq2d ( 𝜑 → ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) = ( 2nd ‘ ⟨ 𝑂 , 𝑃 ⟩ ) )
8 1 2 3 4 5 swapf2fvala ( 𝜑 → ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ { 𝑓 } ) ) )
9 1 2 swapfelvv ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) )
10 6 9 eqeltrrd ( 𝜑 → ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) )
11 opelxp ( ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) ↔ ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) )
12 11 biimpi ( ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) → ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) )
13 op2ndg ( ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) → ( 2nd ‘ ⟨ 𝑂 , 𝑃 ⟩ ) = 𝑃 )
14 10 12 13 3syl ( 𝜑 → ( 2nd ‘ ⟨ 𝑂 , 𝑃 ⟩ ) = 𝑃 )
15 7 8 14 3eqtr3rd ( 𝜑𝑃 = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ { 𝑓 } ) ) )