| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
swapf2fvala.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapf2fvala.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) ) |
| 6 |
1 2 3 4 5
|
swapfval |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 1st ‘ 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) ) |
| 8 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 9 |
8
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ∈ V |
| 10 |
8 8
|
mpoex |
⊢ ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ∈ V |
| 11 |
9 10
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) |
| 12 |
7 11
|
eqtrdi |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |