Metamath Proof Explorer


Theorem swapf1vala

Description: The object part of the swap functor. See also swapf1val . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c ( 𝜑𝐶𝑈 )
swapfval.d ( 𝜑𝐷𝑉 )
swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
Assertion swapf1vala ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑥𝐵 { 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 swapfval.c ( 𝜑𝐶𝑈 )
2 swapfval.d ( 𝜑𝐷𝑉 )
3 swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
4 swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
5 eqidd ( 𝜑 → ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) )
6 1 2 3 4 5 swapfval ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ ( 𝑥𝐵 { 𝑥 } ) , ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
7 6 fveq2d ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 1st ‘ ⟨ ( 𝑥𝐵 { 𝑥 } ) , ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ ) )
8 4 fvexi 𝐵 ∈ V
9 8 mptex ( 𝑥𝐵 { 𝑥 } ) ∈ V
10 8 8 mpoex ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) ∈ V
11 9 10 op1st ( 1st ‘ ⟨ ( 𝑥𝐵 { 𝑥 } ) , ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ 𝑆 ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ ) = ( 𝑥𝐵 { 𝑥 } )
12 7 11 eqtrdi ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑥𝐵 { 𝑥 } ) )