| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
|- ( ph -> C e. U ) |
| 2 |
|
swapfval.d |
|- ( ph -> D e. V ) |
| 3 |
|
swapf2fvala.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapf2fvala.b |
|- B = ( Base ` S ) |
| 5 |
|
eqidd |
|- ( ph -> ( Hom ` S ) = ( Hom ` S ) ) |
| 6 |
1 2 3 4 5
|
swapfval |
|- ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) >. ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( 1st ` ( C swapF D ) ) = ( 1st ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) >. ) ) |
| 8 |
4
|
fvexi |
|- B e. _V |
| 9 |
8
|
mptex |
|- ( x e. B |-> U. `' { x } ) e. _V |
| 10 |
8 8
|
mpoex |
|- ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) e. _V |
| 11 |
9 10
|
op1st |
|- ( 1st ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) >. ) = ( x e. B |-> U. `' { x } ) |
| 12 |
7 11
|
eqtrdi |
|- ( ph -> ( 1st ` ( C swapF D ) ) = ( x e. B |-> U. `' { x } ) ) |