| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
|- ( ph -> C e. U ) |
| 2 |
|
swapfval.d |
|- ( ph -> D e. V ) |
| 3 |
|
swapfval.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfval.b |
|- B = ( Base ` S ) |
| 5 |
|
swapfval.h |
|- ( ph -> H = ( Hom ` S ) ) |
| 6 |
|
df-swapf |
|- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 7 |
6
|
a1i |
|- ( ph -> swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) ) |
| 8 |
|
ovexd |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Xc. d ) e. _V ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> c = C ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> d = D ) |
| 11 |
9 10
|
oveq12d |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Xc. d ) = ( C Xc. D ) ) |
| 12 |
11 3
|
eqtr4di |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> ( c Xc. d ) = S ) |
| 13 |
|
fvexd |
|- ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) -> ( Base ` s ) e. _V ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) -> s = S ) |
| 15 |
14
|
fveq2d |
|- ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) -> ( Base ` s ) = ( Base ` S ) ) |
| 16 |
15 4
|
eqtr4di |
|- ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) -> ( Base ` s ) = B ) |
| 17 |
|
fvexd |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> ( Hom ` s ) e. _V ) |
| 18 |
|
simplr |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> s = S ) |
| 19 |
18
|
fveq2d |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> ( Hom ` s ) = ( Hom ` S ) ) |
| 20 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> H = ( Hom ` S ) ) |
| 21 |
19 20
|
eqtr4d |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> ( Hom ` s ) = H ) |
| 22 |
|
simplr |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> b = B ) |
| 23 |
22
|
mpteq1d |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> ( x e. b |-> U. `' { x } ) = ( x e. B |-> U. `' { x } ) ) |
| 24 |
|
simpr |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> h = H ) |
| 25 |
24
|
oveqd |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> ( u h v ) = ( u H v ) ) |
| 26 |
25
|
mpteq1d |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> ( f e. ( u h v ) |-> U. `' { f } ) = ( f e. ( u H v ) |-> U. `' { f } ) ) |
| 27 |
22 22 26
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) |
| 28 |
23 27
|
opeq12d |
|- ( ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) /\ h = H ) -> <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) |
| 29 |
17 21 28
|
csbied2 |
|- ( ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) /\ b = B ) -> [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) |
| 30 |
13 16 29
|
csbied2 |
|- ( ( ( ph /\ ( c = C /\ d = D ) ) /\ s = S ) -> [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) |
| 31 |
8 12 30
|
csbied2 |
|- ( ( ph /\ ( c = C /\ d = D ) ) -> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) |
| 32 |
1
|
elexd |
|- ( ph -> C e. _V ) |
| 33 |
2
|
elexd |
|- ( ph -> D e. _V ) |
| 34 |
|
opex |
|- <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. e. _V |
| 35 |
34
|
a1i |
|- ( ph -> <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. e. _V ) |
| 36 |
7 31 32 33 35
|
ovmpod |
|- ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) |