| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
swapfval.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapfval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
swapfval.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 6 |
|
df-swapf |
⊢ swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) ) |
| 8 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 ×c 𝑑 ) ∈ V ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → 𝑐 = 𝐶 ) |
| 10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → 𝑑 = 𝐷 ) |
| 11 |
9 10
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 ×c 𝑑 ) = ( 𝐶 ×c 𝐷 ) ) |
| 12 |
11 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 ×c 𝑑 ) = 𝑆 ) |
| 13 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) ∈ V ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
| 15 |
14
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 16 |
15 4
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 17 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑠 ) ∈ V ) |
| 18 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → 𝑠 = 𝑆 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑠 ) = ( Hom ‘ 𝑆 ) ) |
| 20 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 21 |
19 20
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑠 ) = 𝐻 ) |
| 22 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑏 = 𝐵 ) |
| 23 |
22
|
mpteq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |
| 24 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
| 25 |
24
|
oveqd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑢 ℎ 𝑣 ) = ( 𝑢 𝐻 𝑣 ) ) |
| 26 |
25
|
mpteq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 27 |
22 22 26
|
mpoeq123dv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 28 |
23 27
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 29 |
17 21 28
|
csbied2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = 𝐵 ) → ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 30 |
13 16 29
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 31 |
8 12 30
|
csbied2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 32 |
1
|
elexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 33 |
2
|
elexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 34 |
|
opex |
⊢ 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ∈ V |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ∈ V ) |
| 36 |
7 31 32 33 35
|
ovmpod |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |