Metamath Proof Explorer


Theorem swapfelvv

Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c ( 𝜑𝐶𝑈 )
swapfval.d ( 𝜑𝐷𝑉 )
Assertion swapfelvv ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 swapfval.c ( 𝜑𝐶𝑈 )
2 swapfval.d ( 𝜑𝐷𝑉 )
3 eqid ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 )
4 eqid ( Base ‘ ( 𝐶 ×c 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) )
5 eqidd ( 𝜑 → ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) )
6 1 2 3 4 5 swapfval ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
7 fvex ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ∈ V
8 7 mptex ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ { 𝑥 } ) ∈ V
9 7 7 mpoex ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ∈ V
10 8 9 opelvv ⟨ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ ∈ ( V × V )
11 6 10 eqeltrdi ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) )