| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ) |
| 6 |
1 2 3 4 5
|
swapfval |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 7 |
|
fvex |
⊢ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ∪ ◡ { 𝑥 } ) ∈ V |
| 9 |
7 7
|
mpoex |
⊢ ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ∈ V |
| 10 |
8 9
|
opelvv |
⊢ 〈 ( 𝑥 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) , 𝑣 ∈ ( Base ‘ ( 𝐶 ×c 𝐷 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ∈ ( V × V ) |
| 11 |
6 10
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) ) |