| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
|- ( ph -> C e. U ) |
| 2 |
|
swapfval.d |
|- ( ph -> D e. V ) |
| 3 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 4 |
|
eqid |
|- ( Base ` ( C Xc. D ) ) = ( Base ` ( C Xc. D ) ) |
| 5 |
|
eqidd |
|- ( ph -> ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) ) |
| 6 |
1 2 3 4 5
|
swapfval |
|- ( ph -> ( C swapF D ) = <. ( x e. ( Base ` ( C Xc. D ) ) |-> U. `' { x } ) , ( u e. ( Base ` ( C Xc. D ) ) , v e. ( Base ` ( C Xc. D ) ) |-> ( f e. ( u ( Hom ` ( C Xc. D ) ) v ) |-> U. `' { f } ) ) >. ) |
| 7 |
|
fvex |
|- ( Base ` ( C Xc. D ) ) e. _V |
| 8 |
7
|
mptex |
|- ( x e. ( Base ` ( C Xc. D ) ) |-> U. `' { x } ) e. _V |
| 9 |
7 7
|
mpoex |
|- ( u e. ( Base ` ( C Xc. D ) ) , v e. ( Base ` ( C Xc. D ) ) |-> ( f e. ( u ( Hom ` ( C Xc. D ) ) v ) |-> U. `' { f } ) ) e. _V |
| 10 |
8 9
|
opelvv |
|- <. ( x e. ( Base ` ( C Xc. D ) ) |-> U. `' { x } ) , ( u e. ( Base ` ( C Xc. D ) ) , v e. ( Base ` ( C Xc. D ) ) |-> ( f e. ( u ( Hom ` ( C Xc. D ) ) v ) |-> U. `' { f } ) ) >. e. ( _V X. _V ) |
| 11 |
6 10
|
eqeltrdi |
|- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) |